SURESH ANGADI EDUCATION FOUNDATION’S

5 \\ ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

T F Savagaon Road, BELAGAVI 590 009. A|T|\/|
W led/ \pproved by AICTE, New Delhi &Affiliate d to Vis raya Technological University, Belagavi
= (Accredi t d by NAAC) ‘\

Department of Artificial Intelligence and Data Science

LABORATORY MANUAL

Analysis &Design of Algorithm Lab

(2022 Scheme)

Subject Code: BCSL404

Prepared By:

Prof.D.M.Choudarti
Assistant Professor Dept. Al & DS

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
\pproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Institute Vision

To become a premier institute committed to academic excellence and global competence for the

holistic development of students.

Institute Mission

M1: Develop competent human resources, adopt outcome based education (OBE) and implement cognitive

assessment of students.
M2: Inculcate the traits of global competencies amongst the students.

M3: Nurture and train our students to have domain knowledge, develop the qualities of global

professionals and to have social consciousness for holistic development.
Department Vision

To deliver a quality and responsive education in the field of artificial intelligence and data science

emphasizing professional skills to face global challenges in the evolving IT paradigm.
Department Mission

e Leverage multiple pedagogical approaches to impart knowledge on the current and emerging
Al
technologies.

e Develop an inclusive and holistic ambiance that bolsters problem solving, cognitive abilities
and critical thinking.

e Enable students to develop trust worthiness, team spirit, understanding law-of-the-land, social

behaviour to be a global stake holder

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AITM Y&
\pproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi, /
(Accredited by NAAC) ‘\ 2

Department of Artificial Intelligence and Data Science

Program Specific Outcomes (PSOs)

e PSO 1: To apply core knowledge of Artificial Intelligence, Machine Learning, Deep Learning,
Data Science, Big Data Analytics and Statistical Learning to develop effective solutions for real-

world problems.

e PSO 2: To demonstrate proficiency in specialized and emerging technologies such as Natural
Language Processing, Cloud Computing, Robotic Process Automation, Storage Area Networks

and the Internet of Things to meet the stringent and diverse professional challenges.

e PSO 3: To imbibe managerial skills, social responsibility, ethical and moral values through
courses in Management and Entrepreneurship, Software Engineering Principles, Universal
Human Values and Ability Enhancement Programs to meet the industry and societal

expectations.

Program Educational Objectives (PEOS)

PEO1 : Build a strong foundation in mathematics, core programming, artificial intelligence, machine
learning, and data science to enable graduates to analyze, design, and implement intelligent systems

for solving complex real-world problems.

PEO2 : Foster creativity, cognitive and research skills to analyze the requirements and technical

specifications of software to articulate novel engineering solutions for an efficient product design.

PEO3 : Prepare graduates for dynamic career opportunities in Al and Data Science by equipping
them with interdisciplinary knowledge, adaptability, and practical exposure to tools and techniques

required for industry and research.

PEO4 : Instill a strong sense of ethics, professional responsibility, and human values, empowering

graduates to contribute positively to society and lead with integrity in their professional domains.

PEO5 : Encourage graduates to pursue higher education, certification program, entrepreneurial
ventures, etc. by nurturing a mindset of continuous learning and awareness of global trends and

challenges.

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
\pproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program Outcomes (POs)

PO 1: Engineering Knowledge: Apply the Knowledge of Mathematics, Science, Engineering
Fundamentals, and an Engineering specialization to the solution of complex Engineering problems.

PO 2: Problem Analysis: Identify, Formulate, Review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of Mathematics,
natural sciences and engineering sciences.

PO 3: Design/Development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
conditions.

PO 4: Conduct investigations on complex problems: Use research based knowledge and research
methods including design of Experiments, analysis and interpretation of data, and synthesis of
Information to provide valid conclusions.

PO 5: Modern tool usage: Create, select, and apply appropriate technique, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with an
understanding of the limitations.

PO 6: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess
society, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

PO 7: Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
sustainable development.

PO 8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

PO 9: Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

PO 10: Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive clear
instructions.

PO 11: Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s work, as a member and leader in a
team, to manage projects and in multidisciplinary environments

PO 12: Lifelong learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

SURESH ANGADI EDUCATION FOUNDATION’S

\ ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

Savagaon Road, BELAGAVI - 590 009. AITM A
\pproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi, /
(Accredited by NAAC) ‘\ 2

Department of Artificial Intelligence and Data Science

Course objectives:

e To design and implement various algorithms in C/C++ programming using suitable development tools to
address different computational challenges.

e To apply diverse design strategies for effective problem-solving.

e To Measure and compare the performance of different algorithms to determine their efficiency and suitability

for specific tasks

Course Outcomes:

1. Develop programs to solve computational problems using suitable algorithm design strategy.

2. Compare algorithm design strategies by developing equivalent programs and observing running times
for analysis (Empirical).

3. Make use of suitable integrated development tools to develop programs

4. Choose appropriate algorithm design techniques to develop solution to the computational and complex
problems.

5. Demonstrate and present the development of program, its execution and running time(s) and record the

results/inferences.

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
\pproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Subject: Analysis & Design of Algorithms Lab Subject Code: BCSL404
Lab Program list
Exp. Name of the Experiment Page
No. No.
1 Design and implement C/C++ Program to find Minimum Cost Spanning 1-4
Tree of a given connected undirected graph using Kruskal's algorithm
2 Design and implement C/C++ Program to find Minimum Cost Spanning 5.9
Tree of a given connected undirected graph using Prim's algorithm.
3 a. Design and implement C/C++ Program to solve All-Pairs Shortest Paths
problem using Floyd's algorithm. 10-15
b. Design and implement C/C++ Program to find the transitive closure
using Warshal's algorithm.
4 Design and implement C/C++ Program to find shortest paths from a given
vertex in a weighted connected graph to other vertices using Dijkstra's 16-19
algorithm.
5 Design and implement C/C++ Program to obtain the Topological ordering 20-22
of vertices in a given digraph.
6 Design and implement C/C++ Program to solve 0/1 Knapsack problem 23-24
using Dynamic Programming method.
7 Design and implement C/C++ Program to solve discrete Knapsack and
continuous Knapsack problems using greedy approximation method. 25-26
8 Design and implement C/C++ Program to find a subset of a given set S =
{sl, s2,....,sn} of n positive integers whose sum is equal to a given positive 27-29

integer d.
9 Design and implement C/C++ Program to sort a given set of n integer
elements using Selection Sort method and compute its time complexity.
Run the program for varied values of n> 5000 and record the time taken to | 30-31
sort. Plot a graph of the time taken versus n. The elements can be read
from a file or can be generated using the random number generator.
10 | Design and implement C/C++ Program to sort a given set of n integer
elements using Quick Sort method and compute its time complexity. Run
the program for varied values of n> 5000 and record the time taken to sort. | 32-34
Plot a graph of the time taken versus n. The elements can be read from a
file or can be generated using the random number generator.
11 | Design and implement C/C++ Program to sort a given set of n integer
elements using Merge Sort method and compute its time complexity. Run
the program for varied values of n> 5000, and record the time taken to | 35-37
sort. Plot a graph of the time taken versus n. The elements can be read
from a file or can be generated using the random number generator.
12 | Design and implement C/C++ Program for N Queen's problem using

. 38-41
Backtracking.
13 | Viva Questions with answer 43-49

SURESH ANGADI EDUCATION FOUNDATION’S

\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT {
j Savagaon Road, BELAGAVI - 590 009. AlTM ’
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 1: Design and implement C/C++ Program to find Minimum Cost
Spanning Tree of a given connected undirected graph using Kruskal's
algorithm.

Description:

A spanning tree of a connected graph is its connected acyclic subgraph (i.e., a
tree) that contains all the vertices of the graph.

A minimum spanning tree of a weighted connected graph is its spanning tree
of the smallest weight, where the weight of a tree is defined as the sum of the
weights on all its edges.

The minimum spanning tree problem is the problem of finding a minimum
spanning tree for a given weighted connected graph.

Introduction to Kruskal’s Algorithm:

In Kruskal’s algorithm, sort all edges of the given graph in increasing
order. Then it keeps on adding new edges and nodes in the MST (minimum
spanning tree) if the newly added edge does not form a cycle. It picks the
minimum weighted edge at first and the maximum weighted edge at last. Thus we
can say that it makes a locally optimal choice in each step in order to find the
optimal solution. Hence this is a Greedy Algorithm.

Example: Figure below shows the complete graph on four nodes together with
three of its spanning trees

Algorithm:
Steps
1. Sort all the edges in non-decreasing order of their weight.
2. Pick the smallest edge. Check if it forms a cycle with the spanning tree
formed so far. If the cycle is not formed, include this edge. Else, discard it.
3. Repeat step#2 until there are (V-1) edges in the spanning tree.

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

; i\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

5 Savagaon Road, BELAGAVI - 590 009.
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC)

Department of Artificial Intelligence and Data Science

AT
4 ’

Program:

/* Program to implement Kruskal’s Algorithm */

#include<stdio.h>

#include<stdlib.h>

intijk,a,b,u,v,n,ne=1;

int min,mincost=0,cost[9][9],parent[9];

int find(int);

intuni(int,int);

void main()

{
printf("\n\t Implementation of Kruskal's algorithm\n");
printf("\nEnter the no. of vertices:");
scanf("%d",&n);

printf("\nEnter the cost adjacency matrix:\n");
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
scanf("%d",&cost[i][j]);
if(cost[i][j]==0)
cost[i][j]=999;
}

}

printf("The edges of Minimum Cost Spanning Tree are\n");
while(ne < n)
{
for(i=1,min=999;i<=n;i++)
{
for(j=1;j <= n;j++)
{
if(cost[i][j] < min)
{
min=cost[i][j];
a=u=i;
b=v=j;
}
}
}
u=find(u);
v=find(v);
if(uni(u,v))
{
printf("%d edge (%d,%d) =%d\n",ne++,a,b,min);
mincost +=min;

}

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

~%“\\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT {3
B Savagaon Road, BELAGAVI - 590 009. AITM Y
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi, /
(Accredited by NAAC) ‘\ 2

Department of Artificial Intelligence and Data Science

cost[a][b]=cost[b][a]=999;
}
printf("\n\tMinimum cost = %d\n",mincost);
}
int find(int i)
{
while(parent[i])
i=parent[i];
return i;
}
int uni(int i,int j)
{
if(i!=j)
{
parent/[j]=i;
return 1;

}

return O;

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Input Graph:

Spanning Tree

Output 1:

Implementation of Kruskal's algorithm
Enter the no. of vertices: 4

Enter the cost adjacency matrix:

999 5§ 7 3

5 999 6 4

7 6 9998

346 999

The edges of Minimum Cost Spanning Tree are
1 edge (1,4) =3

2 edge (2,4) =4

3 edge (2,3) =6

Minimum cost=13

Output 2:

Implementation of Kruskal's algorithm
Enter the no. of vertices:7

Enter the cost adjacency matrix:
028000100

28016000 14

016012000

00120220 18

000220 25 24

100002500

014002400

The edges of Minimum Cost Spanning Tree are
1 edge (1,6) =10

2 edge (3,4) =12

3 edge (2,7) =14

4 edge (2,3) =16

5 edge (4,5) =22

6 edge (5,6) =25

Minimum cost =99

Performance Analysis

The Kruskal’s method has an O(E log E) or O(V log V) time complexity, where E is
the number of edges and V is the number of vertices.

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

‘\NANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

5 Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 2: Design and implement C/C++ Program to find Minimum Cost
Spanning Tree of a given connected undirected graph using Prim's algorithm.
Description:

Like Kruskal’s algorithm, Prim’s algorithm is also a Greedy algorithm. This
algorithm always starts with a single node and moves through several adjacent
nodes, in order to explore all of the connected edges along the way.

The algorithm starts with an empty spanning tree. The idea is to maintain
two sets of vertices. The first set contains the vertices already included in the
MST, and the other set contains the vertices not yet included. At every step, it
considers all the edges that connect the two sets and picks the minimum
weight edge from these edges. After picking the edge, it moves the other endpoint
of the edge to the set containing Minimum Cost Spanning Tree.

Algorithm:
Step 1: Determine an arbitrary vertex as the starting vertex of the Minimum
Cost Spanning Tree.
Step 2: Follow steps 3 to 5 till there are vertices that are not included in the
Minimum Cost Spanning Tree (known as fringe vertex).
Step 3: Find edges connecting any tree vertex with the fringe vertices.
Step 4: Find the minimum among these edges.
Step 5: Add the chosen edge to the Minimum Cost Spanning Tree if it does not
form any cycle.
Step 6: Return the Minimum Cost Spanning Tree and exit.

Example:

Input Graph: 4 @ s @ , @ 9
@ - © - ©

@ ©-©

@ K@\

“\m#¥

Output Graph:

o

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi, /
(Accredited by NAAC) ‘\ 2

Department of Artificial Intelligence and Data Science

Program:
#include<stdio.h>
intn,cost[10][10],temp,nears[10];
void readv();
void primsalg();
void readv()
{
inti,j;
printf("\n Enter the No of nodes or vertices:");
scanf("%d",&n);
printf("\n Enter the Cost Adjacency matrix of the given graph: \n");

“ Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

5 Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC)

Department of Artificial Intelligence and Data Science

4

nears[k]=nears[1]=0;
mincost=min;
for(i=2;i<=n-1;i++)

{

for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
scanf("%d",&cost[i][j]);
if((cost[i][j]==0) && (i!=}))
{
cost[i][j]=999;
}
}
}

}

void primsalg()

{
intk,l,min,a,t[10][10],u,i,j,mincost=0;
min=999;
for(i=1;i<=n;i++) //To Find the Minimum Edge E(k,)
{

for(u=1;u<=n;u++)
{
if(i!=u)
{
if(cost[i][u]<min)
{
min=cost[i][u];
k=i;
1=u;
}
}
}
}
t[1][1]=k;
t[1][2]=L
printf("\n The Minimum Cost Spanning tree is...");
printf("\n(%d,%d)-->%d" k,],min);
for(i=1;i<=n;i++)
{
if(i'=k)
{
if(cost[i][1]<cost[i][K])
{

nears[i]=l;

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

5 Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\ A
Department of Artificial Intelligence and Data Science

}

else

{

nears|i]=k;
}

}

j = findnextindex(cost,nears);
elil[1]=j;
t[i][2]=nears[j];
printf("\n(%d,%d)-->%d",t[i][1],t[i][2],cost[j][nears][]]]);
mincost=mincost+cost[j][nears[j]];
nears[j]=0;
for(k=1;k<=n;k++)
{
if(nears[k]!=0 && cost[k][nears[Kk]]>cost[K][j])
{

}

nears[Kk]=j;

}
}

printf("\n The Required Mincost of the Spanning Tree is:%d",mincost);
}

int findnextindex(int cost[10][10],int nears[10])
{
int min=999,a,k,p;
for(a=1;a<=n;a++)
{
p=nears]a];
if(p!=0)
{
if(cost[a][p]<min)
{
min=cost[a][p];
k=a;
}
}
}

return k;

}

void main()

{
readv();

primsalg();

n Department of Artificial Intelligence and Data Science

P

} SURESH ANGADI EDUCATION FOUNDATION’S "

-*'“"”“"”fg\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT i@

j Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Input Graph:

w
° D °

Spanning Tree

Output:
Enter the No of nodes or vertices:4

Enter the Cost Adjacency matrix of the given graph:
999573
5999 6 4
7 6999 8
346999

The Minimum Cost Spanning tree is...
(1,4)-->3
(2,4)-->4
(3.2)-->6

The Required Mincost of the Spanning Tree is:13

Performance Analysis:

Time Complexity: O(V?), If the input graph is represented using an adjacency list,
then the time complexity of Prim’s algorithm can be reduced to O(E * log V) with
the help of a binary heap.

n Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 3.a: Design and implement C/C++ Program to solve All-Pairs
Shortest Paths problem using Floyd's algorithm.
Description:

The Floyd Warshall Algorithm is an all pair shortest path algorithm unlike
Dijkstra and Bellman Ford which are single source shortest path algorithms. This
algorithm works for both the directed and undirected weighted graphs. But, it
does not work for the graphs with negative cycles (where the sum of the edges in a
cycle is negative). It follows Dynamic Programming approach to check every
possible path going via every possible node in order to calculate shortest distance
between every pair of nodes.

Algorithm:
ALGORITHM Floyd(W[1..n, 1..n])
//Implements Floyd's algorithm for the all-pairs shortest -paths problem
//Input: The weight matrix W of a graph with no negative-length cycle.
//Output: The distance matrix of the shortest paths' lengths.
D<WwW // is not necessary if W can be overwritten
fork<1tondo
fori< 1tondo
forj<— 1tondo
D[i, j] « min{ D[i, jl, D[i, k] + D[k, j]}
return D

Example:
Input Graph

-

Output Matrix: Distance Matrix:

m O O O »r
N
o
o
w
5

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

; i\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

5 Savagaon Road, BELAGAVI - 590 009.
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,

(Accredited by NAAC)
Department of Artificial Intelligence and Data Science

AT
4 ’

Program:

/* Program to find all pair shortest path. */
#include<stdio.h>
void readf();
void amin();
int cost[20][20],a[20][20];
int i,j,k,n;
void readf()
{
printf("\n Enter the number of vertices :");
scanf("%d",&n);
printf("\n Enter the weighted matrix - 999 for infinity:");
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
scanf("%d",&cost[i][j]);
if(cost[i][j]==0 && (i!=j))
cost[i][j]=999;
a[i][j]=cost[i][j];
}
}
}
void amin()
{
for(k=0;k<n;k++)
{
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(a[i][j]>a[i][k]+a[K][j])
{
a[i][j]=a[i][k]+a[K][j];
}
}
}

}
printf("\n The All pair shortest path is:");

for(i=0;i<n;i++)

{
printf("\n");
for(j=0;j<n;j++)
{

printf("%d\t",a[i] [j]);

}

}

}

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Savagaon Road, BELAGAVI - 590 009. AlTM ’

void main()

{
readf();

amin();

}

INPUT GRAPH:

OUTPUT:

Enter the number of vertices:

4

Enter the weighted matrix - 999 for infinity :
0 999 3 999
2 0 999 999

999 7 0 1
6 999 999 0

The All pair shortest path is:

0 10 3 4
2 0 5 6
7 7 0 1
6 16 9 0
Performance:

Time Complexity: O(V3), where V is the number of vertices in the graph and
we run three nested loops each of size V

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 3.b: Design and implement C/C++ Program to find the transitive
closure using Warshal's algorithm.
Description:

Given a directed graph, determine if a vertex j is reachable from another
vertex i for all vertex pairs (i, j) in the given graph. Here reachable means that there
is a path from vertex i to j. The reach-ability matrix is called the transitive closure
of a graph.

The graph is given in the form of adjacency matrix say ‘graph[V][V]" where

graph[i][j] is 1 if there is an edge from vertex i to vertex j or i is equal to j,
otherwise graph[i][j] is 0.

Floyd Warshall Algorithm can be used, we can calculate the distance
matrix dist[V][V] using Floyd Warshall, if dist[i][j] is infinite, then j is not
reachable from i. Otherwise, j is reachable and the value of dist[i][j] will be less
than V.

Example:

Transitive closure of above graphs is
1111
1111
1111
0001
Algorithm:
ALGORITHM Warshall(A[1..n, 1..n])
//Implements Warshall's algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
R(0) <A
fork < 1 to n do
fori <1 to n do
forj < 1to ndo
R®)[i, j] « RE&D[], j] or (RED[i, k] and RED[K, j])

return R

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program:

/* Program to find the transitive closure using Warshal's algorithm.*/
#include<st
dio.h>
#include<
math.h>
void warshal(int p[10][10], int n)
{
inti,j, k;
for (k=1; k <= n; k++)
for (i=1;i<=n;
i++)
for (j = 1;j <=n; j++)
f[i] b1 =pL10] 1 (p[][K] && plk][i]);

void main()

{

int p[10][10] ={ 0}, n, e, u, v, i, j;
printf("\n Enter the number of
vertices:"); scanf("%d", &n);

printf("\n Enter the number of edges:");
scanf("%d", &e);

printf("Enter the edges:

(wv)\n"); for (i=1;i <=e; i++)

{

scanf("%d%d", &u,&v);
plu][v] =1

}

printf("\n Matrix of input data:
\n"); for (i=1;i <=n;i++)
{

for(j=1;j <=n;j++)
printf("%d\t", p[i][i]);
printf("\n");
}
warshal(p, n);
printf("\n Transitive closure:
\n"); for (i=1;1i <=n; i++)

for{(j =1;j <=m;j++)
printf("%d\t", p[i][j]);
printf("\n");
}
}

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
; Savagaon Road, BELAGAVI - 590 009. AlTM ’
Q. led/ oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
N e (Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Output:

Enter the number of vertices: 4
Enter the number of edges: 4
Enter the edges: (u,v)

12

2 4

41

43

Matrix of input data:
0 1 0 0

0 0 0
0 0 0
1 0 1

S O R

Transitive closure:

1 1 1 1
1 1 1 1
0 0 0 0
1 1 1 1

Input Graph:

(a—®
(O—d

Performance:

Time Complexity: O(V3), where V is the number of vertices in the graph and
we run three nested loops each of size V.

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 4: Design and implement C/C++ Program to find shortest paths from
a given vertex in a weighted connected graph to other vertices using
Dijkstra’'s algorithm.

Description:

Dijkstra's algorithm is often considered to be the most straightforward
algorithm for solving the shortest path problem.

Dijkstra's algorithm is used for solving single-source shortest path
problems for directed or undirected paths. Single-source means that one vertex
is chosen to be the start, and the algorithm will find the shortest path from
that vertex to all other vertices.

Dijkstra's algorithm does not work for graphs with negative edges. For
graphs with negative edges, the Bellman-Ford algorithm that is described on the
next page, can be used instead.

To find the shortest path, Dijkstra's algorithm needs to know which vertex is
the source, it needs a way to mark vertices as visited.

Algorithm for Dijkstra’s Algorithm:

Steps:
1. Mark the source node with a current distance of 0 and the rest with
infinity.
2. Set the non-visited node with the smallest current distance as the current
node.

3. For each neighbor, N of the current node adds the current distance of the
adjacent node with the weight of the edge connecting 0->1. If it is smaller
than the current distance of Node, set it as the new current distance of N.

4. Mark the current node 1 as visited.

5. Go to step 2 if there are any nodes are unvisited.

Example:

Input Graph:

Department of Artificial Intelligence and Data Science

/ ath SURESH ANGADI EDUCATION FOUNDATION’S

"“ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

j Savagaon Road, BELAGAVI - 590 009.
¥ oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC)

Department of Artificial Intelligence and Data Science

AITI\%

hZ

Output Graph:

Unvisited Nodes
{0,1,2,3,4,5,6}

Distance:
0 B4

2
6
7

S8808Q

17

224
192

<

Pan N e
S

Dijkstra’s Algorithm

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009.

(Accredited by NAAC)
Department of Artificial Intelligence and Data Science

oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,

AT
4 ’

Program:

/* Implementation of Dijkstra's Algorithm in C */
#include <stdio.h>

#define INF 9999

#define MAX 10

void DijkstraAlgorithm(int Graph[MAX][MAX], int size, int start)
{
int costf MAX][MAX], distance[MAX], previous[MAX];
int visited_nodes[MAX], counter, minimum_distance, next_node, i, j;
for (i=0; i < size; i++)
for (j = 0; j < size; j++)
if (Graph[i][j] == 0)
cost[i][j] = INF;
else
cost[i][j] = Graphl[i][j];

for (i = 0; i < size; i++)

{
distance[i] = cost[start]][i];
previous|i] = start;
visited_nodes[i] = 0

}

distance[start]| = O;
visited_nodes|start] = 1;
counter = 1;

while (counter < size - 1)
{
minimum_distance = INF;
for (i=0;i<size; i++)
if (distance[i] < minimum_distance && !visited_nodesJi])
{
minimum_distance = distance[i];
next_node = i;

}

visited_nodes[next_node] =1
for (i = 0; i < size; i++)
if (!visited_nodes]Ji])
if (minimum_distance + cost[next_node][i] < distance]i])
{
distance[i] = minimum_distance + cost[next_node][i];
previous|[i] = next_node;
}

counter++;

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

%\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
I Savagaon Road, BELAGAVI - 590 009.

“““ o2 (Accredited by NAAC)
Department of Artificial Intelligence and Data Science

/ oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,

AITI\/I)
(&

for (i=0; i< size; i++)
if (i = start)
{

printf("\nDistance from the Source Node to %d: %d", i, distance[i]);

}
}

void main()
{
int Graph[MAX][MAX], i, j, n, source;
printf("Enter the number of nodes:\n");
scanf("%d",&n);
printf("Enter the cost adjacency Matrix:\n");
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{

}
}

source = 0;
DijkstraAlgorithm(Graph, n, source);

}
OUTPUT:

Enter the number of nodes:

5

Enter the cost adjacency Matrix:
03070

30420

04056

72504

00640

scanf("%d",&Graph[i][j]);

Distance from the Source Node to 1: 3
Distance from the Source Node to 2: 7
Distance from the Source Node to 3: 5
Distance from the Source Node to 4: 9

Performance Analysis:

The time complexity of Dijkstra’s Algorithm is typically O(V2) when using a simple
array implementaion or O((V + E) log V) with a priority queue, where V represents the

number of vertices and E represents the number of edges in the graph.

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

%'\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

5 Savagaon Road, BELAGAVI - 590 009. AlTM
¥ oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
“““ * (Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 5: Design and implement C/C++ Program to obtain the Topological
ordering of vertices in a given digraph.
Description:

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of
vertices such that for every directed edge u-v, vertex u comes before v in the
ordering.

DAGs are a special type of graphs in which each edge is directed such that
no cycle exists in the graph, before understanding why Topological sort only exists
for DAGs.

Example:

Consider the following directed acyclic graph-

For this graph, following 4 different topological orderings are possible-
«123456
123465
«132456
132465

Program:

/* Program to find the topological ordering of vertices */
#include <stdio.h>

const int MAX = 10;

void fnTopological(int al MAX][MAX], intn);

void main()

{

int a[MAX][MAX],n;
inti,j;

printf("Topological Sorting Algorithm -\n");
printf("\nEnter the number of vertices : ");
scanf("%d",&n);
printf("Enter the adjacency matrix:\n");
for (i=0; i<n; i++)

for (j=0; j<n; j++)

scanf("%d",&ali][j]);

fnTopological(a,n);
printf("\n");

m Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

void fnTopological(int a| MAX][MAX], int n)

{
intin[MAX], out[MAX], stack|[MAX], top=-1;
int i,j,k=0;
for (i=0;i<n;i++)

{
in[i] = 0;
for (j=0; j<n; j++)
if (a[j][i] == 1)
in[i]++;
}
while(1)
{
for (i=0;i<n;i++)
{
if (in[i] == 0)
{
stack[++top] =1i;
in[i] =-1;
}
}

if (top==-1)
break;

out[k] = stack[top--];

for (i=0;i<n;i++)
{
if (a[out[Kk]][i] == 1)
in[i]--
}

k++;

}

printf("Topological Sorting as follows:- \n");
for (i=0;i<k;i++)
printf("%d ",out[i] + 1);

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S e

Py

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Output:
Topological Sorting Algorithm -

Enter the number of vertices: 5
Enter the adjacency matrix:
00100

00100

00011

00001

00000

Topological Sorting as follows:-
21345

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 6: Design and implement C/C++ Program to solve 0/1 Knapsack
problem using Dynamic Programming method.
Description:

Given N items where each item has some weight and profit associated with it
and also given a bag with capacity W, [i.e,, the bag can hold at most W weight in
it]. The task is to put the items into the bag such that the sum of profits associated
with them is the maximum possible.

Note: The constraint here is we can either put an item completely into the bag or
cannot put it at all [It is not possible to put a part of an item into the bag].
What is the 0/1 knapsack problem?

The 0/1 knapsack problem means that the items are either completely or no
items are filled in a knapsack. For example, we have two items having weights 2kg
and 3kg, respectively. If we pick the 2kg item then we cannot pick 1kg item from
the 2kg item (item is not divisible); we have to pick the 2kg item completely. This is
a 0/1 knapsack problem in which either we pick the item completely or we will
pick that item. The 0/1 knapsack problem is solved by the dynamic programming.

Program:
/* Program to solve 0/1 Knapsack problem using Dynamic Programming method.

*/
#include<stdio.h>
int max(inta, intb)
{
if(a>b)
return a;
else
return b;
}
int knapsack(int w[], int p[], int n, int M)
{
if(M==0)
return O;
if(n==0)
return O;
if(w[n-1]>M)
return knapsack(w,p,n-1,M);
return max(knapsack(w,p,n-1,M),p[n-1]+knapsack(w,p,n-1,M-w[n-1]));
}
void main()
{
inti,n;
int M; //capacity of knapsack
int w[10]; //weight of items
int p[10]; //value of items
printf("Enter the no. of items:\n");
scanf("%d",&n);
printf("Enter the weight and price of all items:\n");
for(i=0;i<n;i++)

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

%\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

5 Savagaon Road, BELAGAVI - 590 009.
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,

“““ o2 (Accredited by NAAC)
Department of Artificial Intelligence and Data Science

AITM
4 ’

scanf("%d%d",&wl[i],&p[i]);
}
printf("Enter the capacity of knapsack:\n");
scanf("%d",&M);

printf("The maximum value of items that can be put into knapsack is =
%d\n",knapsack(w,p,n,M));
}

Output:

Enter the no. of items:

4

Enter the weight and price of all items:
212

110

32

215

Enter the capacity of knapsack:

5

The maximum value of items that can be put into knapsack is = 37

Performance analysis:
Time Complexity: O(2N)

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 7: Design and implement C/C++ Program to solve discrete Knapsack
and continuous Knapsack problems using greedy approximation method.
Description:

Given the weights and profits of N items, in the form of {profit, weight} put
these items in a knapsack of capacity W to get the maximum total profit in the
knapsack. In Fractional Knapsack, we can break items for maximizing the total
value of the knapsack.

Example:

Input: arr[] = {{60, 10}, {100, 20}, {120, 30}}, W = 50

Output: 240

Explanation: By taking items of weight 10 and 20 kg and 2 /3 fraction of 30 kg.
Hence total price will be 60 +100 + (2/3)(120) = 240

Input: arr[] = {{500, 30}}, W =10
Output: 166.667

/* Program to solve discrete Knapsack and continuous Knapsack problems
using greedy approximation method. */
#include <stdio.h>
void main()
{
int cur_w,n;
float tot_v;
int p[10],w[10],W;
int i, maxi;
intused[10];
printf("Enter the no. of items:\n");
scanf("%d",&n);
printf("Enter the weight and price of all items:\n");
for(i=0;i<n;i++)

{

}
printf("Enter the capacity of knapsack:\n");

scanf("%d",&W);
for (i=0;i<n; ++i)
used[i] =0
cur w=W;
while (cur_w > 0)
{
maxi = -1;
for (i = 0; i < n; ++i)
if ((used[i] == 0) &&
((maxi == -1) || ((float)w[i]/pl[i] > (float)w[maxi]/p[maxi])))
maxi = i;
used[maxi] = 1;
cur_w -= p[maxi];
Department of Artificial Intelligence and Data Science

scanf("%d%d",&wli],&p[i]);

SURESH ANGADI EDUCATION FOUNDATION’S

; i\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

5 Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\ ‘

Department of Artificial Intelligence and Data Science

tot_v += w[maxi];
if (cur_w >=0)
printf("Added object %d (%d, %d) completely in the bag. Space left:
%d.\n", maxi + 1, w{maxi], p[maxi], cur_w);
else

{
printf("Added %d%% (%d, %d) of object %d in the bag.\n", (int)((1 +
(float)cur_w/p[maxi]) * 100), w[maxi], p[maxi], maxi + 1);
tot_v -= w[maxi];
tot_v += (1 + (float)cur_w/p[maxi]) * w[maxi];
}
}
printf("Filled the bag with objects worth %.2f\n", tot_v);

}

Output:

Enter the no. of items:

5

Enter the weight and price of all items:

10 3

15 3

10 2

125

81

Enter the capacity of knapsack:

10

Added object 5 (8, 1) completely in the bag. Space left: 9.
Added object 2 (15, 3) completely in the bag. Space left: 6.
Added object 3 (10, 2) completely in the bag. Space left: 4.
Added object 1 (10, 3) completely in the bag. Space left: 1.
Added 19% (12, 5) of object 4 in the bag.

Filled the bag with objects worth 45.40.

Performance Analysis:
Time Complexity: O(N * W) where N is items and W is capacities.

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

‘\NANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

5 Savagaon Road, BELAGAVI - 590 009. AlTM
s/ oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
N e (Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 8: Design and implement C/C++ Program to find a subset of a given
set S = {sl, s2,...,sn} of n positive integers whose sum is equal to a given
positive integer d.
Description:
Given a set of non-negative integers and a value sum, the task is to check if there
is a subset of the given set whose sum is equal to the given sum.
For the recursive approach, there will be two cases.
1. Consider the ‘last’ element to be a part of the subset. Now the new required
sum = required sum - value of ‘last’ element.
2. Don’tinclude the ‘last’ element in the subset. Then the new required sum =
old required sum.
In both cases, the number of available elements decreases by 1.

Examples:

Input: set[] ={3,34,4,12,5, 2}, sum=9

Output: True

Explanation: There is a subset (4, 5) with sum 9.

Input: set[] = {3, 34, 4, 12, 5, 2}, sum = 30
Output: False
Explanation: There is no subset that add up to 30.

Program:
/* Program to find a subset of a given set S = {sl, s2,......... ,sn} of n positive integers */
#include<stdio.h>
ints[10],d,n,set[10],count=0;
void display(int);
int flag=0;
int subset(int,int);
void main()

{

int i;

printf("Enter the number of elements in set\n");
scanf("%d",&n);

printf("Enter the set values\n");
for(i=0;i<n;++i)

scanf("%d",&s[i]);

printf("Enter the sum\n");
scanf("%d",&d);

printf("The program outputis\n");
subset(0,0);

if(flag==0)

printf("There is no solution");

}

int subset(int sum,int i)

{
if(sum==d)

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

/ oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Savagaon Road, BELAGAVI - 590 009. AlTM ’

flag=1;
display(count);
return (0);

}

if(sum>d||i>=n)

return O;
else
{
set[count]=s[i];
count++;
subset(sum+s][i],i+1);
count--;
subset(sum,i+1);
1
1
void display(int count)
{
int i;
printf("{");
for(i=0;i<count;i++)
printf("%d ",set][i]);

printf("}");
}
Output 1:
Enter the number of elements in set
5
Enter the set values
12568
Enterthe sum
9
The program output is
{12 6}{1 8}
Output 2:
Enter the number of elements in set
5
Enter the set values
12568
Enterthe sum
4

The program outputis

There is no solution

Output 3:

Enter the number of elements in set
5

Enter the set values

12568

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi, /
(Accredited by NAAC) ‘\ 2

Department of Artificial Intelligence and Data Science

Enter the sum
7
The program output is

{16}{2 5}

Performance Analysis:

Time Complexity: O(2n) The above solution may try all subsets of the given set in
worst case. Therefore time complexity of the above solution is exponential. The
problem is in-fact NP-Complete (There is no known polynomial time solution for
this problem).

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

A \ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
; 5 Savagaon Road, BELAGAVI - 590 009. AlTM ’
-4/ oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
X (Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 9: Design and implement C/C++ Program to sort a given set of n
integer elements using Selection Sort method and compute its time
complexity. Run the program for varied values of n> 5000 and record the
time taken to sort. Plot a graph of the time taken versus n. The elements can
be read from a file or can be generated using the random number generator.

Description:

Selection sort is a simple and efficient sorting algorithm that works by
repeatedly selecting the smallest (or largest) element from the unsorted portion of
the list and moving it to the sorted portion of the list.

Program:

#include <stdio.h>
#include <stdlib.h>
#include<time.h>
void swap(long int*a,long int*b)
{
int tmp==*a;
*a:*b;
*b=tmp;
}
void selectionsort (long int arr[],long int n)
{
long int i,j,midx;
for(i=0;i<n-1;i++)

{
midx=i;
for(j=i+1;j<n;j++)
if(arr[j]<arr[midx])
midx=j;
swap(&arr[midx],&arr[i]);
}
}
void main()
{
long int n=1000;
int it=0;

double tim1[10];
printf("Input Size, Selection Sorting time \n");
while(it++<5)
{
long int a[n];
for(inti=0;i<n;i++)
{
long intno=rand()%n+1;
ali]=no;
}
//using clock tto store time
clock_t start,end;

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

5 Savagaon Road, BELAGAVI - 590 009.
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC)

Department of Artificial Intelligence and Data Science

AITI\{W/»IW
4 ’

start=clock();

selectionsort(a,n);

end=clock();

tim1[it]=(double)(end-start) /1000;

printf(" %ld = %ld ms\n",n,(long int)tim1[it]);

n+=1000;

Output:

Input Size, Selection Sorting time

1000 =1 ms
2000 =5ms
3000 =13 ms
4000 =23 ms
5000 =35 ms

Performance Analysis:

Best-case: O(n2), best case occurs when the array is already sorted. (where n is the
number of integers in an array)

Average-case: O(n?2), the average case arises when the elements of the array are in
a disordered or random order, without a clear ascending or descending pattern.
Worst-case: O(n2), The worst-case scenario arises when we need to sort an array in
ascending order, but the array is initially in descending order.

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 10: Design and implement C/C++ Program to sort a given set of n
integer elements using Quick Sort method and compute its time complexity.
Run the program for varied values of n> 5000 and record the time taken to
sort. Plot a graph of the time taken versus n. The elements can be read from
a file or can be generated using the random number generator.

Description:

QuickSort is a sorting algorithm based on the Divide and Conquer algorithm that
picks an element as a pivot and partitions the given array around the picked pivot
by placing the pivot in its correct position in the sorted array.

How does QuickSort work?

The key process in quickSort is a partition(). The target of partitions is to place
the pivot (any element can be chosen to be a pivot) at its correct position in the
sorted array and put all smaller elements to the left of the pivot, and all greater
elements to the right of the pivot.

Partition is done recursively on each side of the pivot after the pivot is placed
in its correct position and this finally sorts the array.

{10, 80, 30, 90, 40, 50,
/ﬁrtidon m
70 (Last element)
{10, 30, 40, . {90
P1rt1t10n nomy \ / Partition around 80

0, 30, { {} {} {90}
Partition / ;

around

a0 {10, Go)
/ \Pmtmgn
around 30
oy {3

Program:

/* Program to arrange the elements in increasing order */
#include <stdio.h>

#include <stdlib.h>

#include<time.h>

static int max= 5000;
static int partition(long int arr[],int low,int high)
{
int pivot = arr[low];
inti=low;
intj=high+1;
while(i<=j)
{
do

m Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

/ oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Savagaon Road, BELAGAVI - 590 009. AlTM ’

1++;
}while(pivot>=arr|[i] && i<=high);
do
{
j-=
} while(pivot<arr[j]);
if(i<j)
{
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
int temp = arr[low];
arr[low] = arrf[j];
arr[j] = temp;
return j;
}
static void gs(long int arr[],int low,int high)
{
int mid;
if(low<high)
{
mid = partition(arr, low, high);
gs(arr,Jow,mid-1);
gs(arr,mid+1,high);
}
}
void main()
{
int n,i;
long int a[5000], no;
double tm;
//using clock t to store time
clock_t start,end;
printf("\n Enter the number of elements:\n");
scanf("%d",&n);

for(i=0;i<n;i++)
{
no=rand()%n+1;
ali]=no;
}
start=clock();
qs(a,0,n-1);
end=clock();
tm = (end - start);
printf(" %d = %If\n Nano Seconds",n,tm);

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

5 Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\
Department of Artificial Intelligence and Data Science

}
Output:
Enter the number of elements:
1000

1000 = 128.000000
Nano Seconds

Time Complexity:

Best Case: (1 (N log (N))

The best-case scenario for quicksort occur when the pivot chosen at the each step
divides the array into roughly equal halves.

In this case, the algorithm will make balanced partitions, leading to efficient
Sorting.

Average Case: 0 (N log (N))

Quicksort’s average-case performance is usually very good in practice, making it
one of the fastest sorting Algorithm.

Worst Case: O(N2)

The worst-case Scenario for Quicksort occur when the pivot at each step
consistently results in highly unbalanced partitions. When the array is already
sorted and the pivot is always chosen as the smallest or largest element.

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 11: Design and implement C/C++ Program to sort a given set of n
integer elements using Merge Sort method and compute its time complexity.
Run the program for varied values of n> 5000, and record the time taken to
sort. Plot a graph of the time taken versus n. The elements can be read from
a file or can be generated using the random number generator.

Description:

Like QuickSort, Merge Sort is a Divide and Conquer algorithm. It divides the
input array into two halves, calls itself for the two halves, and then it merges the
two sorted halves. The merge() function is used for merging two halves. The
merge(arr, I, m, r) is a key process that assumes that arr[l.m] and arr[m+1..r] are
sorted and merges the two sorted sub-arrays into one.

Algorithm:

Step 1: Start

Step 2: Declare an array and left, right, mid variable

Step 3: Perform merge function.
mergesort(array,left,right)
mergesort (array, left, right)
if left > right
return
mid= (left+right)/2
mergesort(array, left, mid)
mergesort(array, mid+1, right)
merge(array, left, mid, right)

Step 4: Stop

Program:

/* Program to implement Merge Sort */
#include<stdio.h>
#include<time.h>
#include <stdlib.h>
#define max 5000
int array[max];
void merge(int low, int mid, int high)
{
inttemp[max];
inti =low;
intj =mid +1;
intk =low;
while((i <= mid) && (j <=high))
{
if(array|[i] <= array[j])
temp[k++] = array[i++] ;
else
temp[k++] = array[j++] ;

j Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

; i\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

5 Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

while(i <= mid)
temp[k++]=array[i++];

while(j <= high)
temp[k++]=array|[j++];

for(i=low; i <= high ; i++)
array[i]=templi];

}
void merge_sort(int low, int high)
{
int mid;
if(low != high)
{
mid = (low+high)/2;
merge_sort(low, mid);
merge_sort(mid+1, high);
merge(low, mid, high);
}
}
void main()
{

int i,n, no;

double tm;

clock_tstart,end;

printf("Enter the number of elements : ");

scanf("%d",&n);

for(i=0;i<n;i++)

{
no=rand()%n+1;
array|[i]=no;

}

printf("Unsorted listis :\n");

for(i=0;i<n;i++)
printf("%d", array[i]);

start=clock();

merge_sort(0, n-1);

printf("\nSorted listis :\n");

for(i=0;i<n;i++)
printf("%d ", array[i]);

printf("\n");

end=clock();

tm = (end - start);
printf(" %d = %lf Nano Seconds \n",n,tm);
printf("\n");
}/*End of main()*/

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

%\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

5 Savagaon Road, BELAGAVI - 590 009.
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,

“““ o2 (Accredited by NAAC)
Department of Artificial Intelligence and Data Science

AITM
4 ’

Output:

Enter the number of elements : 20

Unsorted list is :

47181614167 131023811204 7171317

Sorted list is :

123447777810111313 14161617 18 20
20 =26.000000 Nano Seconds

Performance Analysis:

Time Complexity: O(nlog(n))

Sorting arrays on different machines. Merge Sort is a recursive algorithm and time

complexity can be expressed as following recurrence relation.
T(n) = 2T(n/2) + 6(n)

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

[Q\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT @)
Savagaon Road, BELAGAVI - 590 009. AITM ’ o
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Program 12: Design and implement C/C++ Program for N Queen's problem
using Backtracking.

Description:

The N Queen is the problem of placing N chess queens on an NxN chessboard so
that no two queens attack each other.

For example, the following is a solution for the 4 Queen problem.

N Queen Problem using Backtracking:

The idea is to place queens one by one in different columns, starting from
the leftmost column. When we place a queen in a column, we check for clashes
with already placed queens. In the current column, if we find a row for which
there is no clash, we mark this row and column as part of the solution. If we do not
find such a row due to clashes, then we backtrack and return false.

Program:

/* Program for N Queen's problem using Backtracking */
#include<stdio.h>

#include<math.h>

intboard[20],count;

void main()

{

int n,ij;
void queen(int row,int n);
printf(" - N Queens Problem Using Backtracking -");
printf("\n Enter number of Queens:");
scanf("%d",&n);
queen(1,n);

}

//function for printing the solution
void print(int n)
{
inti,j;
printf("\n\nSolution %d:\n\n",++count);

for(i=1;i<=n;++i)
printf("\t%d",i);

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

for(i=1;i<=n;++i)

{
printf("\n\n%d",i);
for(j=1;j<=n;++j)

{
if(board[i]==j)
printf("\tQ");
else
printf("\t*");
}
}
}
int place(int row,int column)
{
int i;
for(i=1;i<=row-1;++i)
{
if(board[i]==column)
return 0;
else
if(abs(board[i]-column)==abs(i-row))
return 0;
}
return 1;
}
void queen(int row,int n)
{

int column;
for(column=1;column<=n;++column)

{
if(place(row,column))
{
board[row]=column;
if(row==n)
print(n);
else
queen(row+1,n);
}
}

Department of Artificial Intelligence and Data Science

2“ SURESH ANGADI EDUCATION FOUNDATION’S

““”“fg\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT @\

Savagaon Road, BELAGAVI - 590 009. AlTM
/ oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\
Department of Artificial Intelligence and Data Science
Output:
Enter number of Queens: 5
Solution 1:

Solution 3:

4 * * Q * *

5 * * * * Q

Solution 4:

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

\ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT {
Savagaon Road, BELAGAVI - 590 009. AlTM ’
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

4 more solutions are possible.

Performance Analysis:
Time Complexity: O(N!)

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Subject: Analysis & Design of Algorithms Lab Subject Code: BCSL404

Viva Questions
1. Whatis an algorithm?

Answer: An algorithm is a step-by-step procedure for solving a problem or accomplishing a
task.

2. What are the characteristics of a good algorithm?
Answer: A good algorithm should be correct, efficient, and easy to understand.

3. What is the difference between an algorithm and a program?
Answer: An algorithm is a step-by-step procedure for solving a problem, while a program is an
implementation of an algorithm in a particular programming language.

4. What is the time complexity of an algorithm?
Answer: The time complexity of an algorithm is a measure of the amount of time it takes to
run as a function of the size of the input data.

5. What is the space complexity of an algorithm?
Answer: The space complexity of an algorithm is a measure of the amount of memory it
requires as a function of the size of the input data.

6. What is the Big O notation?
Answer: The Big O notation is used to describe the upper bound on the time complexity of an
algorithm.

7. What is the worst-case time complexity of an algorithm?
Answer: The worst-case time complexity of an algorithm is the maximum amount of time it
takes to run over all possible inputs of a given size.

8. What is the best-case time complexity of an algorithm?
Answer: The best-case time complexity of an algorithm is the minimum amount of time it
takes to run over all possible inputs of a given size.

9. Whatis the average-case time complexity of an algorithm?
Answer: The average-case time complexity of an algorithm is the expected amount of time it
takes to run over all possible inputs of a given size.

10. What is the difference between the best-case and worst-case time complexity of an
algorithm?
Answer: The best-case time complexity is the minimum amount of time an algorithm can take
to run, while the worst-case time complexity is the maximum amount of time an algorithm can
take to run.

11. What is the difference between the average-case and worst-case time complexity of
an algorithm?

Answer: The worst-case time complexity is the maximum amount of time an algorithm can
take to run, while the average-case time complexity is the expected amount of time an
algorithm will take to run.

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

12. What is the difference between time complexity and space complexity?
Answer: Time complexity measures the amount of time an algorithm takes to run, while space
complexity measures the amount of memory an algorithm requires.

13. What is a sorting algorithm?
Answer: A sorting algorithm is an algorithm that puts a collection of data items into a specific
order, such as alphabetical or numerical order.

14. What is memoization in dynamic programming?
Answer: Memoization is a technique of storing the results of solved subproblems in a table to
avoid their repeated calculation in future recursive calls.

15. What is the difference between dynamic programming and divide-and-conquer
algorithms?

Answer: Dynamic programming involves solving subproblems and reusing their solutions to
solve the main problem, while divide-and-conquer algorithms divide the problem into
independent subproblems and solve them separately.

16. What is the time complexity of the brute-force approach?
Answer: The time complexity of the brute-force approach is typically O(n”n) or O(2”n), where n
is the size of the input.

17. What is the difference between stable and unstable sorting algorithms?
Answer: Stable sorting algorithms preserve the relative order of equal elements in the input,
while unstable sorting algorithms may not.

18. What is the time complexity of the quicksort algorithm?
Answer: The average-case time complexity of the quicksort algorithm is O(n*log*n), where n is
the size of the input.

19. What is the difference between in-place and out-of-place sorting algorithms?

Answer: In-place sorting algorithms sort the input array in place without using additional
memory, while out-of-place sorting algorithms require additional memory to store the sorted
output.

20. What is the time complexity of the mergesort algorithm?
Answer: The time complexity of the mergesort algorithm is O(n*log*n), where n is the size of
the input.

21. What is the difference between breadth-first search and depth-first search
algorithms?

Answer: Breadth-first search explores the nodes in the graph in a breadth-first order, while
depth-first search explores the nodes in a depth-first order.

22. What is the difference between a graph and a tree data structure?
Answer: A tree is a special case of a graph, where there are no cycles, and every pair of nodes
is connected by a unique path.

23. What is the time complexity of the Dijkstra’s algorithm?
Answer: The time complexity of Dijkstra’s algorithm is O(E*log*V), where E is the number of
edges and V is the number of vertices in the graph.

24. What is the difference between a directed graph and an undirected graph?
43 Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Answer: A directed graph has directed edges, where each edge points from one vertex to
another, while an undirected graph has undirected edges, where each edge connects two
vertices without any direction.

25. What is the difference between a complete graph and a sparse graph?
Answer: A complete graph has all possible edges between every pair of vertices, while a sparse
graph has relatively fewer edges.

26. What is the difference between a greedy algorithm and a dynamic programming
algorithm?

Answer: A greedy algorithm makes locally optimal choices at each step, while a dynamic
programming algorithm solves subproblems and reuses their solutions to solve the main
problem.

27. What is a divide-and-conquer algorithm?

Answer: A divide-and-conquer algorithm is an algorithm that recursively divides a problem
into subproblems of smaller size, solves the subproblems, and combines the solutions to solve
the original problem.

28. What is a greedy algorithm?
Answer: A greedy algorithm is an algorithm that makes locally optimal choices at each step,
hoping to find a globally optimal solution.

29. What is dynamic programming?

Answer: Dynamic programming is an algorithmic technique that solves problems by breaking
them down into smaller subproblems and storing the solutions to these subproblems to avoid
redundant calculations.

30. What is backtracking?

Answer: Backtracking is an algorithmic technique that involves exploring all possible solutions
to a problem by systematically trying different choices, and undoing choices that lead to dead
ends.

31. Whatis recursion?
Answer: Recursion is a programming technique in which a function calls itself to solve a
problem.

32. What is the difference between recursion and iteration?
Answer: Recursion involves calling a function from within itself to solve a problem, while
iteration involves using loops to repeat a block of code until a condition is met.

33. What s the difference between top-down and bottom-up dynamic programming?
Answer: Top-down dynamic programming involves solving a problem by breaking it down into
subproblems, while bottom-up dynamic programming involves solving the subproblems first
and combining them to solve the original problem.

34. What is the Knapsack problem?
Answer: The Knapsack problem is a classic optimization problem in which a set of items with
different weights and values must be packed into a knapsack of a given capacity, while
maximizing the total value of the items.

35. What is the traveling salesman problem?
Answer: The traveling salesman problem is a classic optimization problem in which a

44 Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
Qe oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
"""" ¥ (Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

salesman must visit a set of cities, each only once, and return to his starting point, while
minimizing the total distance traveled.

36. What is the complexity of the brute-force solution to the traveling salesman
problem?

Answer: The brute-force solution to the traveling salesman problem has a time complexity of
0O(n!), where n is the number of cities.

37. What is a graph?
Answer: A graph is a data structure that consists of a set of vertices (nodes) and a set of edges
that connect pairs of vertices.

38. What is a directed graph?
Answer: A directed graph is a graph in which each edge has a direction, indicating a one-way
connection between two vertices.

39. What is an undirected graph?
Answer: An undirected graph is a graph in which each edge has no direction, indicating a
bidirectional connection between two vertices.

40. What is a weighted graph?
Answer: A weighted graph is a graph in which each edge has a weight or cost assigned to it,
indicating the cost or distance between the two vertices it connects.

41. What is a cycle in a graph?
Answer: A cycle in a graph is a path that starts and ends at the same vertex, and includes at
least one edge.

42. What is a connected graph?
Answer: A connected graph is a graph in which there is a path between every pair of vertices.

43. What is a spanning tree?
Answer: A spanning tree of a graph is a subgraph that includes all the vertices of the graph
and forms a tree (a connected acyclic graph).

44. What is the minimum spanning tree of a graph?
Answer: The minimum spanning tree of a graph is the spanning tree with the minimum sum
of the weights of its edges.

45. What is Kruskal’s algorithm?
Answer: Kruskal's algorithm is a greedy algorithm that finds the minimum spanning tree of a
graph by repeatedly adding the next lightest edge that does not form a cycle.

46. Whatis Prim’s algorithm?

Answer: Prim’s algorithm is a greedy algorithm that finds the minimum spanning tree of a
graph by starting at a random vertex and repeatedly adding the next lightest edge that
connects a vertex in the tree to a vertex outside the tree.

47. What is the time complexity of Kruskal’s algorithm and Prim’s algorithm?
Answer: The time complexity of Kruskal’s algorithm and Prim’s algorithm is O(E log E), where
E is the number of edges in the graph.

48. What is a topological sort?
45 Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

Answer: A topological sort of a directed acyclic graph is a linear ordering of its vertices such
that for every directed edge from vertex u to vertex v, u comes before v in the ordering.

49. What is the time complexity of a topological sort?
Answer: The time complexity of a topological sort is O(V + E), where V is the number of
vertices and E is the number of edges in the graph.

50. What is the difference between breadth-first search and topological sort?

Answer: Breadth-first search is a graph traversal algorithm that visits all the vertices in the
graph at a given distance (level) from a starting vertex before moving on to vertices at a greater
distance. Topological sort, on the other hand, is a way of ordering the vertices of a directed
acyclic graph such that for every directed edge u->v, u comes before v in the ordering.

51. What is Dijkstra’s algorithm?

Answer: Dijkstra’s algorithm is a greedy algorithm that finds the shortest path between a
starting vertex and all other vertices in a graph with non-negative edge weights. It works by
maintaining a set of vertices for which the shortest path is known, and repeatedly selecting the

vertex with the shortest path and updating the shortest paths to its neighbors.

52. What s the time complexity of Dijkstra’s algorithm?
Answer: The time complexity of Dijkstra’s algorithm is O((V+E)log V) using a binary heap,
where V is the number of vertices and E is the number of edges in the graph.

53. What is the Floyd-Warshall algorithm?

Answer: The Floyd-Warshall algorithm is a dynamic programming algorithm that finds the
shortest path between all pairs of vertices in a graph with possibly negative edge weights. It
works by maintaining a table of shortest path estimates for all pairs of vertices, and repeatedly
updating these estimates based on intermediate vertices.

54. What is the time complexity of the Floyd-Warshall algorithm?
Answer: The time complexity of the Floyd-Warshall algorithm is O(V"3), where V is the number
of vertices in the graph.

55. What is the difference between dynamic programming and greedy algorithms?
Answer: Both dynamic programming and greedy algorithms are techniques for solving
optimization problems, but they differ in their approach. Dynamic programming involves
breaking a problem down into smaller subproblems and solving each subproblem only once,
storing the solution in a table to avoid re-computation. Greedy algorithms, on the other hand,
make the locally optimal choice at each step, without considering the global optimal solution.
Dynamic programming is generally more computationally expensive than greedy algorithms,
but can handle more complex optimization problems.

56. Whatis the principle of optimality?

Answer: The principle of optimality is a key concept in dynamic programming that states that
an optimal solution to a problem can be constructed from optimal solutions to its
subproblems.

57. Whatis quicksort algorithm?

Answer: Quicksort is a popular sorting algorithm that uses a divide-and-conquer strategy to
sort an array of elements. It works by selecting a pivot element from the array, partitioning the
array into two subarrays based on the pivot, and recursively sorting the subarrays. Quicksort
has an average case time complexity of O(n log n), making it one of the fastest sorting

algorithms in practice.
m Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

58. What is merge sort algorithm?

Answer: Merge sort is a popular sorting algorithm that uses a divide-and-conquer strategy to
sort an array of elements. It works by dividing the array into two halves, recursively sorting
each half, and then merging the two sorted halves together. Merge sort has a worst-case time
complexity of O(n log n), making it a good choice for sorting large datasets.

59. What is the difference between quicksort and mergesort?

Answer: Quicksort and mergesort are both popular sorting algorithms that use the divide-and-
conquer strategy, but they differ in their approach. Quicksort uses a pivot element to partition
the array and sort the subarrays recursively, while mergesort divides the array into two halves
and sorts them recursively before merging the sorted halves together. In general, quicksort is
faster than mergesort in practice, but mergesort has a more predictable worst-case time
complexity.

60. What is dynamic programming used for?

Answer: Dynamic programming is a technique used to solve optimization problems that can be
broken down into smaller subproblems. It is often used in problems involving sequence
alignment, shortest path finding, knapsack problems, and other optimization problems.

61. Whatis the time complexity of bubble sort?
Answer: The time complexity of bubble sort is O(n”2), where n is the size of the array being

sorted. Bubble sort works by repeatedly swapping adjacent elements that are out of order, so it
needs to make O(n”2) comparisons and swaps in the worst case.

62. What is the time complexity of insertion sort?

Answer: The time complexity of insertion sort is O(n”2), where n is the size of the array being
sorted. Insertion sort works by iteratively inserting each element in the proper position in a
sorted subarray, so it needs to make O(n”2) comparisons and swaps in the worst case.

63. What is the time complexity of selection sort?

Answer: The time complexity of selection sort is O(n”2), where n is the size of the array being
sorted. Selection sort works by repeatedly finding the smallest element in the unsorted portion
of the array and swapping it with the first unsorted element, so it needs to make O(n”"2)
comparisons and swaps in the worst case.

64. What is the time complexity of a linear search?

Answer: The time complexity of a linear search is O(n), where n is the size of the array being
searched. Linear search works by iterating through each element in the array until it finds the
target element, so it needs to make O(n) comparisons in the worst case.

65. What s the difference between the Dynamic programming and Greedy method?
Answer:

Characteristic Dynamic Programming Greedy Method
Bottom-up approach (start from Top-down approach (start from the
Approach subproblems and build up to solve main problem and make locally
the main problem) optimal choices)

Optimal solution not always

Solution quality Optimal solution guaranteed guaranteed

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009.
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,

(Accredited by NAAC)
Department of Artificial Intelligence and Data Science

Amvl)

(<

Subproblem
reuse

Subproblems are solved only once
and their solutions are stored in a
table

Subproblems are not revisited, and
the locally optimal choice is made at
each step

Solution space

Considers all possible solutions

Considers only the locally optimal
solution

Time complexity

Can have a higher time complexity
than Greedy Method

Can have alower time complexity
than Dynamic Programming

Suitable for problems that exhibit

Suitable for problems where making

problem

Suitable optimal substructure and overlapping locally optimal choices leads to a

problems . :
subproblems global optimal solution

Examples Fibonacci sequence, Knapsack Coin changing problem, Huffman

coding

66. List the advantage of Huffman’s encoding?
Answer: Huffman’s encoding is a crucial file compression technique that provides the following
benefits:

Easy to use

Flexible

Implements optimal and minimum length encoding

67. Whatis the Algorithm’s Time Complexity?
Answer: The time complexity of an algorithm refers to the total amount of time required for the
program to run until it finishes.
[t is typically expressed using the big O notation.
The algorithm’s time complexity indicates the length of time needed for the program to
run entirely. Algorithm's Time Complexity

68. What is a Greedy method in DAA?

Answer: Greedy algorithms solve optimization problems by constructing a solution piece by
piece. At each step, they select the next component that provides an immediate benefit without
taking prior decisions into account. This method is primarily employed for addressing
optimization problems.

69. Can you explain Asymptotic Notation?

Answer: Asymptotic Notation is a mathematical technique used to analyze and describe the
behavior of functions as their input size approaches infinity. This notation involves methods
whose domains are the set of natural numbers and is useful for defining the worst-case
running time function T(n). It can also be extended to the domain of the real numbers.

70. Whatis the difference between Time Efficiency and Space Efficiency?

Answer: Time Efficiency refers to the measure of the number of times the critical algorithm
functions are executed, while Space Efficiency calculates the number of additional memory
units utilized by the algorithm.

Department of Artificial Intelligence and Data Science

SURESH ANGADI EDUCATION FOUNDATION’S

Savagaon Road, BELAGAVI - 590 009. AlTM
oproved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
(Accredited by NAAC) ‘\

Department of Artificial Intelligence and Data Science

71. Can you provide an overview of how Merge sort works, and can you give an example
of its implementation?

Answer: Merge sort is a sorting algorithm that involves dividing the original list into two
smaller sub-lists until only one item is left in each sub-list. These sub-lists are then sorted,
and the sorted sub-lists are merged to form a sorted parent list. This process is repeated
recursively until the original list is completely sorted.

For example, suppose we have an unsorted list of numbers: [5, 2, 8, 4, 7, 1, 3, 6]. The Merge
sort algorithm will first divide the list into two sub-lists: [5, 2, 8, 4] and [7, 1, 3, 6]. Each sub-
list will then be recursively divided until only one item is left in each sub-list: [5], [2], [8], [4],
[71, [1], [3], [6]- These single-item sub-lists are then sorted and merged pairwise to form new
sub-lists: [2, 5], [4, 8], [1, 7], [3, 6]. The process continues recursively until the final sorted list
is obtained: [1, 2, 3, 4, 5,6, 7, 8].

72. Can you explain the concept of Huffman code?

Answer: Huffman code refers to a variable-length encoding technique that involves
constructing an optimal prefix tree to assign bit strings to characters based on their frequency
in a given text.

73. Can you describe dynamic Huffman coding?

Answer: Dynamic Huffman coding involves updating the coding tree every time a new
character is read from the source text. It is an improved version of the simplest Huffman
coding technique and is used to overcome its limitations.

74. Can you define the n-queen problem?
Answer: The n-queen problem involves placing n queens on an n-by-n chessboard in
a way that none of the queens attack each other by being

Department of Artificial Intelligence and Data Science

y\PREVZ RN [ANALYSIS AND DESIGN OF ALGORITHMS LAB (BCSL404)]

Dept. of Computer Science and Engineering, MIT Mysore.

	Program Educational Objectives (PEOs)
	Program Outcomes (POs)

