SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI - 590 0009. AITM ’
(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi, ‘ /
Accredited by NAAC) -
DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

GENERATIVE Al LAB MANUAL

VI Semester AI&DS

Designed By,
1. Prof. Vaibhav Chavan

2. Dr. Aijaz Qazi

Campus :Savagaon Road, Belagavi — 590 009. @ 0831 — 2438100, 2438123, Fax: 0831-2438197
Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

SURESH ANGADI EDUCATION FOUNDATION’S =

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

Savagaon Road, BELAGAVI - 590 0009. AITM ’ 5
(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi, ‘ /
Accredited by NAAC) -

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Institute Vision

To become premier institute committed to academic excellence and global competence for the

holistic development of students.

Key words: academic excellence, global competence, holistic development.

Institute Mission

M1: Develop competent human resources, adopt outcome based education (OBE) and implement

cognitive assessment of students.

M2: Inculcate the traits of global competencies amongst the students.

M3: Nurture and train our students to have domain knowledge, develop the qualities of global

professionals and to have social consciousness for holistic development.

Department Vision

To deliver a quality and responsive education in the field of artificial intelligence and data science

emphasizing professional skills to face global challenges in the evolving IT paradigm.

Key words: quality and responsive, professional skills, global challenges.

Department Mission

M1: Leverage multiple pedagogical approaches to impart knowledge on the current and emerging Al

technologies.

M2: Develop an inclusive and holistic ambiance that bolsters problem solving, cognitive abilities and

critical thinking.

M3: Enable students to develop trust worthiness, team spirit, understanding law-of-the-land, social

behavior to be a global stake holder.

Campus :Savagaon Road, Belagavi — 590 009. @ 0831 — 2438100, 2438123, Fax: 0831-2438197
Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

SURESH ANGADI EDUCATION FOUNDATION’S =

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

Savagaon Road, BELAGAVI - 590 0009. AITM ’ 5
(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi, ‘ /
Accredited by NAAC) -

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Program Specific Outcomes (PSOs):

PSO1: To apply core knowledge of Artificial Intelligence, Machine Learning, Deep Learning, Data
Science, Big Data Analytics and Statistical Learning to develop effective solutions for real-world

problems.

PSO2: To demonstrate proficiency in specialized and emerging technologies such as Natural
Language Processing, Cloud Computing, Robotic Process Automation, Storage Area Networks and the

Internet of Things to meet the stringent and diverse professional challenges.

PSO3: To imbibe managerial skills, social responsibility, ethical and moral values through courses in
Management and Entrepreneurship, Software Engineering Principles, Universal Human Values and

Ability Enhancement Programs to meet the industry and societal expectations.

Program Educational Objectives (PEOs)

PEO 1: Build a strong foundation in mathematics, core programming, artificial intelligence, machine
learning, and data science to enable graduates to analyze, design, and implement intelligent systems

for solving complex real-world problems.

PEO 2: Foster creativity, cognitive and research skills to analyze the requirements and technical

specifications of software to articulate novel engineering solutions for an efficient product design.

PEO 3: Prepare graduates for dynamic career opportunities in Al and Data Science by equipping them
with interdisciplinary knowledge, adaptability, and practical exposure to tools and techniques required

for industry and research.

PEO 4: Instill a strong sense of ethics, professional responsibility, and human values, empowering

graduates to contribute positively to society and lead with integrity in their professional domains.

PEO 5: Encourage graduates to pursue higher education, certification program, entrepreneurial
ventures, etc. by nurturing a mindset of continuous learning and awareness of global trends and

challenges.

Campus :Savagaon Road, Belagavi — 590 009. @ 0831 — 2438100, 2438123, Fax: 0831-2438197
Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

Generative AI (BAIL657C)

Experiment 1

Aim: Explore pre-trained word vectors. Explore word relationships using vector arithmetic. Perform

arithmetic operations and analyze results.
Code:

import gensim.downloader as api
def load():
print("Loading word vectors.")
model = api.load("word2vec-google-news-300")
print("Loaded!")
return model
def vec_arith(model):
print("\nExploring word relationships using word vectors")
result = model.most_similar(positive=["GOOD", "BAD"], negative=["HAPPY"], topn=1)
print("GOOD + BAD - HAPPY =", result)

result = model.most_similar(positive=["INDIA", "CANADA"], negative=["DELHI"], topn=1)
print("INDIA + CANADA - DELHI =", result)

def main():
model = load()
vec_arith(model)

if name ==" main "
main()

Output:

Loading word vectors.
Loaded!

Exploring word relationships using word vectors
GOOD + BAD - HAPPY = [('TERRIBLE', ©.45916804671287537)]
INDIA + CANADA - DELHI = [('NEW_ZEALAND', ©.5123980641365051)]

Department of Artificial Intelligence and Data Science, AITM, Belagavi 1

Generative AI (BAIL657C)

Experiment 2

Aim: Use dimensionality reduction (e.g., PCA or t-SNE) to visualize word embeddings for Q 1. Select 10
words from a specific domain (e.g., sports, technology) and visualize their embeddings. Analyze clusters
and relationships. Generate contextually rich outputs using embeddings. Write a program to generate 5
semantically similar words for a given input.

Code:

import gensim.downloader as api
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import numpy as np
def load():
print("Loading pre-trained word vectors...")
model = api.load("word2vec-google-news-300")
print("Model loaded successfully!")
return model
def vector_arithmetic(model):
print("\nExploring word relationships using vector arithmetic:")
examples = [
(["king", "woman"], ["man"]),
(["Paris", "Italy"], ["France"]),
(["walking", "run"], ["walk"])
]
for pos, neg in examples:
try:
result = model.most_similar(positive=pos, negative=neg, topn=1)
print(f" {pos} - {neg} = {result}")
except KeyError as e:
print(f"Word '{e.args[0]}' not found in vocabulary.")
def visualize _embeddings(model, words, method="PCA"):
valid_words = [word for word in words if word in model.key to index]
vectors = np.array([model[word] for word in valid words])

if method == "PCA":
reducer = PCA(n_components=2)
else:
reducer = TSNE(n_components=2, random_state=42, perplexity=min(30, len(valid_words)-1))
reduced vectors = reducer.fit_transform(vectors)
plt.figure(figsize=(10, 6))
for 1, word in enumerate(valid_words):
plt.scatter(reduced vectors[i, 0], reduced vectors[i, 1])
plt.annotate(word, (reduced vectors][i, 0], reduced vectors[i, 1]))

Department of Artificial Intelligence and Data Science, AITM, Belagavi 2

Generative AI (BAIL657C)

plt.title(f"Word Embeddings Visualization using {method}")

plt.show()
def find similar words(model, word, topn=5):
if word in model.key to index:
return model.most similar(word, topn=topn)
else:
return f"Word '{word}' not in vocabulary"
def main():
model = load()

tech_words = ["books", "study", "notes", "homework", "assignment", "tutor

n"nn

"class", "attendance"]

visualize embeddings(model, tech words, method="PCA")
visualize embeddings(model, tech_words, method="t-SNE')

word = "education"

similar_ words = find_similar words(model, word)
print(f"Top 5 words similar to '{word}":", similar words)

if name ==" main_ "

main()
Output:

Loading pre-trained word vectors...
Model loaded successfully!

Word Embeddings Visualization using PCA

"n-n

student", "teachers",

1.5
gotes
study
1.0 4
@ssignment
&ooks
0.5 1
0.0 1 class
gomework gttendance
—-0.5
gutor
—1.0 1 student
-1.5 1
deachers
-1.0 -0.5 0.0 0.5 1.5 2.0 2.5
Department of Artificial Intelligence and Data Science, AITM, Belagavi 3

Generative AI (BAIL657C)

Word Embeddings Visualization using t-SNE

801

60 4

40 A

204

_20 4

_40 -

=60 1

class

dotes

gdutor

domework

&ooks

g@ttendance

@ssignment

student

deachers

Study

Top 5 words similar to

-60 =40 =20

0

20 40 60 80

‘education’: [('eduction’, ©.7980327010154724), ('eduation’, ©.7175651788711548), ('LISA_MICHALS covers', ©.6817381381988525), ('M

att_Krupnick_covers', @.6798164248466492), ('educational’, ©.6780007481575012)]

Department of Artificial Intelligence and Data Science, AITM, Belagavi 4

Generative AI (BAIL657C)

Experiment 3

Aim: Train a custom Word2Vec model on a small dataset. Train embeddings on a domain-specific corpus
(e.g., legal, medical) and analyze how embeddings capture domain-specific semantics.

Code:

Step 1:
import nltk
nltk.download('punkt’)

Step 2:
legal corpus = [
"The court ruled in favor of the defendant in the civil case.",
"Intellectual property law protects patents, copyrights, and trademarks.",
"The plaintiff filed a lawsuit against the corporation for breach of contract.",
"A judge must ensure due process is followed in all criminal trials.",
"Legal precedents set by the Supreme Court influence lower court decisions.",
"The attorney argued that the evidence was inadmissible in court."
]
from nltk.tokenize import word_tokenize
from gensim.models import Word2Vec
import string
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
import numpy as np
def preprocess_text(corpus):
cleaned corpus =[]
for sentence in corpus:
tokens = word_tokenize(sentence.lower()) # Tokenize and lowercase
tokens = [word for word in tokens if word.isalnum()] # Remove punctuation
cleaned corpus.append(tokens)
return cleaned corpus
tokenized corpus = preprocess_text(legal corpus)
print("Tokenized Corpus:", tokenized corpus)
model = Word2Vec(sentences=tokenized corpus, vector size=100, window=5, min_count=1, workers=4)
model.save("legal word2vec.model")
print("Word2Vec model trained and saved successfully!")
model = Word2Vec.load("legal word2vec.model")
word = "judge"
if word in model.wv:
print(f"\nWords similar to '{word}":")
similar words = model.wv.most_similar(word, topn=5)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 5

Generative AI (BAIL657C)

for w, sim in similar words:
print(f'{w}: {sim:.4f}")

else:

print(f"'{word}' not found in vocabulary.")
words = ["court", "judge", "plaintiff", "defendant", "law", "attorney"]
word_vectors = np.array([model.wv[word] for word in words if word in model.wv])
valid words = [word for word in words if word in model.wv]
pca =PCA(n_components=2)
reduced vectors = pca.fit_transform(word vectors)
plt.figure(figsize=(8, 6))
for 1, word in enumerate(valid_words):

plt.scatter(reduced vectors[i, 0], reduced vectors[i, 1])

plt.annotate(word, (reduced_vectors[i, 0], reduced_vectors|[i, 1]))
plt.title("Word Embeddings Visualization (PCA)")
plt.show()

Output:

Tokenized Corpus: [['the', ‘court', ‘ruled®, 'in*, ‘faver', 'of', 'the’, 'defendant®, 'in‘', 'the’, 'civil®, ‘'case'], ['intellectual’, ‘property’, 'law’,
'protects’, ‘patents’', 'copyrights', 'and', ‘trademarks'], ['the', 'plaintiff', 'filed', 'a', 'lawsuit', 'against', 'the', 'corporation’, 'for', 'breac
h*, 'of', ‘contract'], ['a’, "judge', 'must’', ‘ensure’', ‘due’, ‘process’, 'is', ‘followed', 'in‘, "all’, ‘criminal’, ‘trials'], ['legal’, 'precedents’,
‘set', 'by', 'the', 'supreme’, ‘court’, "influence®, 'lower', ‘court’, ‘decisions'], ['the’, 'attorney’, 'argued', "that', 'the', ‘evidence’', 'was', 'in
admissible’, "in®, ‘court']]

Word2Vec model trained and saved successfully!

Words similar to 'judge':
lawsuit: ©.2855

due: ©.27@5

trials: ©.2599

court: @.1887

argued: 8.1424

Word Embeddings Visualization (PCA)

gttorney
0.03 4

0.02
&ourt

efendant
0.01 4 ¢ judde

0.00 -

—0.01 A

—0.02 A

—0.03 A

@laintiff

—0.04

T T T
—0.03 —0.02 -0.01 0.00 0.01 0.02 0.03

Department of Artificial Intelligence and Data Science, AITM, Belagavi 6

Generative AI (BAIL657C)

Experiment 4

Aim: Use word embeddings to improve prompts for Generative Al model. Retrieve similar words using
word embeddings. Use the similar words to enrich a GenAl prompt. Use the Al model to generate responses
for the original and enriched prompts. Compare the outputs in terms of detail and relevance.

Code:

import gensim.downloader as api
from gensim.models import KeyedVectors
import numpy as np
print("Loading word embeddings...")
word_vectors = api.load("glove-wiki-gigaword-50")
print("Word embeddings loaded.")
def get similar words(word, topn=5):
try:
similar_ words = word vectors.most_similar(word, topn=topn)
return [word for word, similarity in similar words]
except KeyError:
return []
def enrich_prompt(original prompt):
words = original prompt.split()
enriched words =[]
for word in words:
similar words = get similar words(word, topn=2) # Get 2 similar words per word
if similar_words:
enriched words.append(f"' {word} ({', '.join(similar_words)})")
else:
enriched words.append(word)
return " " join(enriched words)
def mock genai_response(prompt):
if len(prompt.split()) > 10: # Enriched prompts are longer
return f"Generated response to '{prompt}": This is a detailed and nuanced answer with rich context and
additional insights."
else:
return f"'Generated response to '{prompt}": This is a concise and straightforward answer."
original prompt = "Students from my class are tired of my subject"
enriched prompt = enrich_prompt(original prompt)
print(f"Original Prompt: {original prompt}")
print(f"Enriched Prompt: {enriched prompt}")
original response = mock genai_response(original prompt)
enriched response = mock genai_response(enriched prompt)
print("\nResponses:")
print(f'Original Response: {original response}")
print(f'Enriched Response: {enriched response}")

Department of Artificial Intelligence and Data Science, AITM, Belagavi 7

Generative AI (BAIL657C)

def compare outputs(original, enriched):
original length = len(original.split())
enriched length = len(enriched.split())
print("\nComparison:")
print(f'Original Response Length: {original length} words")
print(f"Enriched Response Length: {enriched length} words")
print("Detail & Relevance Analysis:")
if enriched length > original length:
print("The enriched prompt produced a more detailed response due to added context from similar
words.")
else:
print("The enriched prompt did not significantly improve detail.")
compare _outputs(original response, enriched response)

Output:

Loading word embeddings...

Word embeddings loaded.

Original Prompt: Students from my class are tired of my subject

Enriched Prompt: Students from (in, while) my (your, me) class (classes, type) are (other, these) tired (scared, feel) of (which, in) my (your, me) subj
ect (legal, terms)

Rezponses:

Original Response: Generated response to 'Students from my class are tired of my subject': This is a concise and straightforward answer.

Enriched Response: Generated response to 'Students from (in, while) my (your, me) class (classes, type) are (other, these) tired (scared, feel) of (whic
h, in) my (your, me) subject (legal, terms)': This is a detailed and nuanced answer with rich context and additional insights.

Comparison:

Original Response Length: 19 words

Enriched Response Length: 41 words

Detail & Relevance Analysis:

The enriched prompt produced a more detailed response due to added context from similar words.

Department of Artificial Intelligence and Data Science, AITM, Belagavi 8

Generative AI (BAIL657C)

Experiment 5

Aim: Use word embeddings to create meaningful sentences for creative tasks. Retrieve similar words for a
seed word. Create a sentence or story using these words as a starting point. Write a program that: Takes a seed
word. Generates similar words. Constructs a short paragraph using these words.

Code:

import random
import gensim.downloader as api
def'load model():
return api.load("glove-wiki-gigaword-100")
def get similar words(model, seed, topn=>5):
if seed in model:
return [w for w, _in model.most_similar(seed, topn=topn)]
else:
return [|
def make paragraph(seed, similar words):
words = [seed] + similar words
random.shuffle(words)

sentence =" ".join(f"{w}" for w in words[:-1])
sentence += " and finally {words[-1]}"
return (

f"Once upon a time, the notion of “{seed}” sparked imagination. "
f"As ideas took shape, characters and scenes burst forth: {sentence}. "
"Thus began a tale unlike any other."
)
def main():
seed = input("Enter a seed word: ").strip().lower()
print("Loading model...")
model = load model()
print(f"Finding words similar to '{seed}'...")
similars = get_similar words(model, seed, topn=5)
if not similars:
print(f"Sorry, '{seed}' is not in the model vocabulary.")
return
print("Similar words:", similars)
paragraph = make paragraph(seed, similars)
print("\nGenerated Paragraph:\n")
print(paragraph)
if name ==" main "
main()

Department of Artificial Intelligence and Data Science, AITM, Belagavi 9

Generative AI (BAIL657C)

Output:

Enter a seed word: cricket

Loading model.

Finding words similar to 'cricket'.

Similar words: ['rugby’, 'twenty2@', ‘england’, ‘indies', ‘cricketers']

Generated Paragraph

Once upon & time, the notion of “cricket” sparked imagination. As ideas took shape, characters and scenes burst forth: twenty2® cricketers england rugby

indies and finally cricket. Thus began a tale unlike any other.

Department of Artificial Intelligence and Data Science, AITM, Belagavi 10

Generative AI (BAIL657C)

Experiment 6

Aim: Use a pre-trained Hugging Face model to analyze sentiment in text. Assume a real-world application,
Load the sentiment analysis pipeline. Analyze the sentiment by giving sentences to input.

Code:
Step 1:
Ipip install transformers

Step 2:
from transformers import pipeline
sentiment_analyzer = pipeline("sentiment-analysis")
sentences = [
"I love using Hugging Face models, they are amazing!",
"The weather today is terrible and I feel so sad.",
"This is the best day of my life!",
"I'm not sure how I feel about this."
]
results = sentiment_analyzer(sentences)
for sentence, result in zip(sentences, results):
print(f'Sentence: {sentence}")
print(f"Sentiment: {result['label']}, Confidence: {result['score']:.4f}")
print("-" * 50)

Output:

Sentence: I love using Hugging Face models, they are amazing!
Sentiment: POSITIVE, Confidence: @.9999

Sentence: The weather today is terrible and I feel so sad.
Sentiment: NEGATIVE, Confidence: @.9992

Sentence: This is the best day of my life!

Sentiment: POSITIVE, Confidence: @.9999

Sentence: I'm not sure how I feel about this.

Sentiment: NEGATIVE, Confidence: @.9992

Department of Artificial Intelligence and Data Science, AITM, Belagavi 11

Generative AI (BAIL657C)

Experiment 7

Aim: Summarize long texts using a pre-trained summarization model using Hugging face model. Load the
summarization pipeline. Take a passage as input and obtain the summarized text.

Code:

from transformers import pipeline

summarizer = pipeline("summarization")

passage = """

India, country that occupies the greater part of South Asia. It is made up of

28 states and eight union territories, and its national capital is New Delhi,

built in the 20th century just south of the historic hub of Old Delhi to serve

as India’s administrative center. Its government is a constitutional republic

that represents a highly diverse population consisting of thousands of ethnic

groups and hundreds of languages. India became the world’s most populous country
in 2023, according to estimates by the United Nations.

nmn

summary = summarizer(passage, max_length=100, min_length=25, do _sample=False)
print(summary[0]['summary_text'])

Output:

It is made up of 28 states and eight union territories, and its national capital is New Delhi . India became the world’s most populous country in 2023,
according to estimates by the United Nations .

Department of Artificial Intelligence and Data Science, AITM, Belagavi 12

Generative AI (BAIL657C)

Experiment 8

Aim: Install langchain, cohere (for key), langchain-community. Get the api key(By logging into Cohere and

obtaining the cohere key). Load a text document from your google drive . Create a prompt template to display

the output in a particular manner.

Code:

1)!pip install langchain

2)!pip install cohere

3)!pip install langchain-community

4)!pip install google-auth

5)!pip install google-auth-oauthlib

6)!pip install google-auth-httplib2

7)!pip install google-api-python-client==2.126.0

import os
os.environ["COHERE API KEY"]="YOUR COHERE API KEY"

import os
import io
from google.auth.transport.requests import Request
from google.oauth2.credentials import Credentials
from google auth oauthlib.flow import InstalledAppFlow
from googleapiclient.discovery import build
from googleapiclient.http import MedialoBaseDownload
SCOPES = ['https://www.googleapis.com/auth/drive.readonly']
def authenticate google drive():

creds = None

if os.path.exists('token.json'):

creds = Credentials.from_authorized user_file('token.json', SCOPES)

if not creds or not creds.valid:
if creds and creds.expired and creds.refresh_token:
creds.refresh(Request())
else:

flow = InstalledAppFlow.from_client secrets_file('client secret 1076587815690-

251ejnti0a9q291r9d 1tt497efgohaar.apps.googleusercontent.com.json', SCOPES)

creds = flow.run_local server(port=0)
with open('token.json', 'w') as token:

token.write(creds.to_json())

return creds

def download file from drive(file id, output file):

creds = authenticate _google drive()

service = build('drive', 'v3', credentials=creds)

request = service.files().get media(fileld=file id)

Department of Artificial Intelligence and Data Science, AITM, Belagavi

13

Generative AI (BAIL657C)

th = i0.FileIO(output_file, 'wb')
downloader = MedialoBaseDownload(th, request)
done = False

while done is False:
status, done = downloader.next chunk()

print(f"Download {int(status.progress() * 100)}%.")
print(f"'File downloaded to {output file}")
file_id ="1r1gDsmkgX0TLj47Ke9bgDUKtzwm3ul4Q'

output_file ='GenAlpgm.txt'
download file from_drive(file id, output file)

Output:
E GAllab8.xt b i
File Edit View HIv i=v B J @& 8
’.” - Greg Anderson

“The Law of Win/Win says, ‘Let’s not do it your way or my way; let’s do it the best way

“It is not true that everyone is special.”
“Be the change that you wish to see in the world.”
“Kindness is a language that the deaf can hear and the blind can see.”

Download 1@@%.
File downloaded to GenAIpgm.txt

E GAllaba.ixt GenAlpgm.txt
File Edit View H1~ =~ B [@
rThe Law of Win/Win says, ‘Let’s not do it your way or my way; let’s do it the best way’.” - Greg Anderson

“Tt is not true that everyone is special.”

“Be the change that you wish to see in the world.”
“Kindness is a language that the deaf can hear and the blind can see.”

2

14

Department of Artificial Intelligence and Data Science, AITM, Belagavi

Generative AI (BAIL657C)

Experiment 9

Aim: Take the Institution name as input. Use Pydantic to define the schema for the desired output and create
a custom output parser. Invoke the Chain and Fetch Results. Extract the below Institution related details from
Wikipedia: The founder of the Institution. When it was founded. The current branches in the institution . How
many employees are working in it. A brief 4-line summary of the institution.

Code:
Step 1:
Ipip install wikipedia-api

Step 2:
from pydantic import BaseModel
from typing import List
import wikipediaapi
class InstitutionDetails(BaseModel):
founder: str
founded year: int
branches: List[str]
employee count: int
summary: str
def fetch wikipedia data(institution_name: str) -> str:
wiki_wiki = wikipediaapi. Wikipedia(language='en', user agent="MyWikipediaBot/1.0")
page = wiki_wiki.page(institution name)
if not page.exists():
raise ValueError(f"Wikipedia page for '{institution name}' not found.")
return page.text
import re
def extract institution_details(text: str) -> InstitutionDetails:
founder match = re.search(r"founded by ([\w\s]+)", text, re. IGNORECASE)
founder = founder _match.group(1) if founder match else "Unknown"
year_match = re.search(r"founded in (\d{4})", text, re. IGNORECASE)
founded_year = int(year_match.group(1)) if year match else 0
branches_match = re.findall(r"branches in ([\w\s]+)", text, re. IGNORECASE)
branches = branches_match if branches match else ["Unknown"]
employee match = re.search(r"(\d+,?\d*) employees", text, re. IGNORECASE)
employee count = int(employee match.group(1).replace(",", "")) if employee match else 0
summary = "\n" join(text.split("\n")[:4])
return InstitutionDetails(
founder=founder,
founded year=founded year,
branches=branches,
employee count=employee count,

Department of Artificial Intelligence and Data Science, AITM, Belagavi 15

Generative AI (BAIL657C)

summary=summary

)

def get _institution_details(institution_name: str) -> InstitutionDetails:
wiki text = fetch wikipedia data(institution name)
details = extract institution details(wiki_text)
return details

if name ==" main ":
institution_name = "MIT"
details = get institution details(institution name)
print(details)

Output:

founder="HIT alumni were a country’ founded year=1985 branches=['Unknown'] employee_count=8 summary='The Massachusetts Institute of Technology (MIT) is

a private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of m
any areas of modern technology and science.\nIn response to the increasing industrialization of the United States, William Barton Rogers organized a sch
ool in Boston to create "useful knowledge." Initially funded by a federal land grant, the institute adopted a polytechnic model that stressed laboratory
instruction in applied science and engineering. MIT moved from Boston to Cambridge in 1916 and grew rapidly through collaboration with private industry,
military branches, and new federal basic research agencies, the formation of which was influenced by MIT faculty like Vannevar Bush. In the late twentie
th century, MIT became a leading center for research in computer science, digital technology, artificial intelligence and big science initiatives like t
he Human Genome Project. Engineering remains its largest school, though MIT has also built programs in basic science, social sciences, business manageme
nt, and humanities.\nThe institute has an urban campus that extends more than a mile (1.6 km) along the Charles River. The campus is known for academic

buildings interconnected by corridors and many significant modernist buildings. MIT\'s off-campus operations include the MIT Lincoln Laboratory and the

Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes. Campus life is often noted for demanding workloads,
a hands-on approach to research and coursework, and elaborate practical jokes known as "hacks".\nAs of October 2024, 185 Nobel laureates, 26 Turing Awar
d winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science re
cipients, 29 National Medals of Technology and Innovation recipients, 5@ MacArthur Fellows, 83 Marshall Scholars, 41 astronauts, 16 Chief Scientists of

the U5S Air Force, and 8 foreign heads of state have been affilisted with MIT. The institute also has a strong entrepreneurial culture and MIT alumni hav
e founded or co-founded many notable companies.’

Department of Artificial Intelligence and Data Science, AITM, Belagavi 16

Generative AI (BAIL657C)

Experiment 10

Aim: Build a chatbot for the Indian Penal Code. We'll start by downloading the official Indian Penal Code
document, and then we'll create a chatbot that can interact with it. Users will be able to ask questions about
the Indian Penal Code and have a conversation with it.

Code:

import json

Load IPC JSON data
defload ipc data(file path=r"D:\ipcc_multi_chapter.json"):
with open(file path, "r", encoding="utf-8") as file:
return json.load(file)

Retrieve section details
def get section_details(ipc_data, section_number):
for chapter, details in ipc_data["Indian Penal Code"].items():
if "sections" in details and section _number in details["sections"]:
return details["sections"][section_number]
return None

Simple chatbot function
def ipc_chatbot():

ipc_data = load ipc_data()

print("\n &8 Welcome to the IPC Chatbot! Ask me about any IPC section (e.g., 'Tell me about Section 6').
Type 'exit' to quit. &&\n")

while True:
user_input = input("You: ").strip().lower()

if user_input == "exit":
print("Exiting [PC Chatbot. Have a great day!")
break

Extract section number

words = user_input.split()
section_number = None

for 1, word in enumerate(words):

if word == "section" and 1 + 1 < len(words):
section_number = "Section " + words[i + 1]
break

if section_number:

Department of Artificial Intelligence and Data Science, AITM, Belagavi 17

Generative AI (BAIL657C)

details = get section_details(ipc_data, section_number)

if details:
print(f"\n{section_number}: {details['title']}\n{details['description']}\n")
else:
print(f" Sorry, I couldn't find {section number} in the IPC data.")
else:

print(" Please ask about a specific section (e.g., 'Tell me about Section 6').")

Run the chatbot
if name ==" main "
ipc_chatbot()

In[|:

Output:

Welcome to the IPC Chatbot! Ask me about any IPC section (e.g., 'Tell me about Section 6'). Type "exit® to quit.
You: Tell me about Section 3@@

Section 3@@: Murder
Defines murder.

You: Tell me about Section 382

Section 3@2: Punishment for Murder
Punishment for committing murder.

You: Tell me about Section 387

Section 3@7: Attempt to Murder
Deals with attempt to commit murder.

You: Tell me about Section 359

Section 359: Kidnapping
Defines kidnapping.

You: Tell me about Section 499

Section 499: Defamation
Defines defamation.

You: Tell me about Section 398

Section 39@: Robbery
Defines robbery.

You: exit
Exiting IPC Chatbot. Have a great day!

Department of Artificial Intelligence and Data Science, AITM, Belagavi 18

