

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI – 590 009.

(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
Accredited by NAAC)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Campus :Savagaon Road, Belagavi – 590 009. : 0831 – 2438100, 2438123, Fax: 0831-2438197

Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

GENERATIVE AI LAB MANUAL

VI Semester AI&DS

Designed By,

1. Prof. Vaibhav Chavan

2. Dr. Aijaz Qazi

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI – 590 009.

(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
Accredited by NAAC)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Campus :Savagaon Road, Belagavi – 590 009. : 0831 – 2438100, 2438123, Fax: 0831-2438197

Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

Institute Vision

To become premier institute committed to academic excellence and global competence for the

holistic development of students.

Key words: academic excellence, global competence, holistic development.

Institute Mission

M1: Develop competent human resources, adopt outcome based education (OBE) and implement

cognitive assessment of students.

M2: Inculcate the traits of global competencies amongst the students.

M3: Nurture and train our students to have domain knowledge, develop the qualities of global

professionals and to have social consciousness for holistic development.

Department Vision

To deliver a quality and responsive education in the field of artificial intelligence and data science

emphasizing professional skills to face global challenges in the evolving IT paradigm.

Key words: quality and responsive, professional skills, global challenges.

Department Mission

M1: Leverage multiple pedagogical approaches to impart knowledge on the current and emerging AI

technologies.

M2: Develop an inclusive and holistic ambiance that bolsters problem solving, cognitive abilities and

critical thinking.

M3: Enable students to develop trust worthiness, team spirit, understanding law-of-the-land, social

behavior to be a global stake holder.

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI – 590 009.

(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
Accredited by NAAC)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Campus :Savagaon Road, Belagavi – 590 009. : 0831 – 2438100, 2438123, Fax: 0831-2438197

Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

Program Specific Outcomes (PSOs):

PSO1: To apply core knowledge of Artificial Intelligence, Machine Learning, Deep Learning, Data

Science, Big Data Analytics and Statistical Learning to develop effective solutions for real-world

problems.

PSO2: To demonstrate proficiency in specialized and emerging technologies such as Natural

Language Processing, Cloud Computing, Robotic Process Automation, Storage Area Networks and the

Internet of Things to meet the stringent and diverse professional challenges.

PSO3: To imbibe managerial skills, social responsibility, ethical and moral values through courses in

Management and Entrepreneurship, Software Engineering Principles, Universal Human Values and

Ability Enhancement Programs to meet the industry and societal expectations.

Program Educational Objectives (PEOs)

PEO 1: Build a strong foundation in mathematics, core programming, artificial intelligence, machine

learning, and data science to enable graduates to analyze, design, and implement intelligent systems

for solving complex real-world problems.

PEO 2: Foster creativity, cognitive and research skills to analyze the requirements and technical

specifications of software to articulate novel engineering solutions for an efficient product design.

PEO 3: Prepare graduates for dynamic career opportunities in AI and Data Science by equipping them

with interdisciplinary knowledge, adaptability, and practical exposure to tools and techniques required

for industry and research.

PEO 4: Instill a strong sense of ethics, professional responsibility, and human values, empowering

graduates to contribute positively to society and lead with integrity in their professional domains.

PEO 5: Encourage graduates to pursue higher education, certification program, entrepreneurial

ventures, etc. by nurturing a mindset of continuous learning and awareness of global trends and

challenges.

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 1

Experiment 1

Aim: Explore pre-trained word vectors. Explore word relationships using vector arithmetic. Perform

arithmetic operations and analyze results.

Code:

import gensim.downloader as api

def load():

 print("Loading word vectors.")

 model = api.load("word2vec-google-news-300")

 print("Loaded!")

 return model

def vec_arith(model):

 print("\nExploring word relationships using word vectors")

 result = model.most_similar(positive=["GOOD", "BAD"], negative=["HAPPY"], topn=1)

 print("GOOD + BAD - HAPPY =", result)

 result = model.most_similar(positive=["INDIA", "CANADA"], negative=["DELHI"], topn=1)

 print("INDIA + CANADA - DELHI =", result)

def main():

 model = load()

 vec_arith(model)

if __name__ == "__main__":

 main()

Output:

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 2

Experiment 2

Aim: Use dimensionality reduction (e.g., PCA or t-SNE) to visualize word embeddings for Q 1. Select 10

words from a specific domain (e.g., sports, technology) and visualize their embeddings. Analyze clusters

and relationships. Generate contextually rich outputs using embeddings. Write a program to generate 5

semantically similar words for a given input.

Code:

import gensim.downloader as api

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.manifold import TSNE

import numpy as np

def load():

 print("Loading pre-trained word vectors...")

 model = api.load("word2vec-google-news-300")

 print("Model loaded successfully!")

 return model

def vector_arithmetic(model):

 print("\nExploring word relationships using vector arithmetic:")

 examples = [

 (["king", "woman"], ["man"]),

 (["Paris", "Italy"], ["France"]),

 (["walking", "run"], ["walk"])

]

 for pos, neg in examples:

 try:

 result = model.most_similar(positive=pos, negative=neg, topn=1)

 print(f"{pos} - {neg} = {result}")

 except KeyError as e:

 print(f"Word '{e.args[0]}' not found in vocabulary.")

def visualize_embeddings(model, words, method='PCA'):

 valid_words = [word for word in words if word in model.key_to_index]

 vectors = np.array([model[word] for word in valid_words])

 if method == 'PCA':

 reducer = PCA(n_components=2)

 else:

 reducer = TSNE(n_components=2, random_state=42, perplexity=min(30, len(valid_words)-1))

 reduced_vectors = reducer.fit_transform(vectors)

 plt.figure(figsize=(10, 6))

 for i, word in enumerate(valid_words):

 plt.scatter(reduced_vectors[i, 0], reduced_vectors[i, 1])

 plt.annotate(word, (reduced_vectors[i, 0], reduced_vectors[i, 1]))

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 3

 plt.title(f"Word Embeddings Visualization using {method}")

 plt.show()

def find_similar_words(model, word, topn=5):

 if word in model.key_to_index:

 return model.most_similar(word, topn=topn)

 else:

 return f"Word '{word}' not in vocabulary"

def main():

 model = load()

 tech_words = ["books", "study", "notes", "homework", "assignment", "tutor", "student", "teachers",

"class", "attendance"]

 visualize_embeddings(model, tech_words, method='PCA')

 visualize_embeddings(model, tech_words, method='t-SNE')

 word = "education"

 similar_words = find_similar_words(model, word)

 print(f"Top 5 words similar to '{word}':", similar_words)

if __name__ == "__main__":

 main()

Output:

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 4

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 5

Experiment 3

Aim: Train a custom Word2Vec model on a small dataset. Train embeddings on a domain-specific corpus

(e.g., legal, medical) and analyze how embeddings capture domain-specific semantics.

Code:

Step 1:

import nltk

nltk.download('punkt')

Step 2:

legal_corpus = [

 "The court ruled in favor of the defendant in the civil case.",

 "Intellectual property law protects patents, copyrights, and trademarks.",

 "The plaintiff filed a lawsuit against the corporation for breach of contract.",

 "A judge must ensure due process is followed in all criminal trials.",

 "Legal precedents set by the Supreme Court influence lower court decisions.",

 "The attorney argued that the evidence was inadmissible in court."

]

from nltk.tokenize import word_tokenize

from gensim.models import Word2Vec

import string

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

import numpy as np

def preprocess_text(corpus):

 cleaned_corpus = []

 for sentence in corpus:

 tokens = word_tokenize(sentence.lower()) # Tokenize and lowercase

 tokens = [word for word in tokens if word.isalnum()] # Remove punctuation

 cleaned_corpus.append(tokens)

 return cleaned_corpus

tokenized_corpus = preprocess_text(legal_corpus)

print("Tokenized Corpus:", tokenized_corpus)

model = Word2Vec(sentences=tokenized_corpus, vector_size=100, window=5, min_count=1, workers=4)

model.save("legal_word2vec.model")

print("Word2Vec model trained and saved successfully!")

model = Word2Vec.load("legal_word2vec.model")

word = "judge"

if word in model.wv:

 print(f"\nWords similar to '{word}':")

 similar_words = model.wv.most_similar(word, topn=5)

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 6

 for w, sim in similar_words:

 print(f"{w}: {sim:.4f}")

else:

 print(f"'{word}' not found in vocabulary.")

words = ["court", "judge", "plaintiff", "defendant", "law", "attorney"]

word_vectors = np.array([model.wv[word] for word in words if word in model.wv])

valid_words = [word for word in words if word in model.wv]

pca = PCA(n_components=2)

reduced_vectors = pca.fit_transform(word_vectors)

plt.figure(figsize=(8, 6))

for i, word in enumerate(valid_words):

 plt.scatter(reduced_vectors[i, 0], reduced_vectors[i, 1])

 plt.annotate(word, (reduced_vectors[i, 0], reduced_vectors[i, 1]))

plt.title("Word Embeddings Visualization (PCA)")

plt.show()

Output:

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 7

Experiment 4

Aim: Use word embeddings to improve prompts for Generative AI model. Retrieve similar words using

word embeddings. Use the similar words to enrich a GenAI prompt. Use the AI model to generate responses

for the original and enriched prompts. Compare the outputs in terms of detail and relevance.

Code:

import gensim.downloader as api

from gensim.models import KeyedVectors

import numpy as np

print("Loading word embeddings...")

word_vectors = api.load("glove-wiki-gigaword-50")

print("Word embeddings loaded.")

def get_similar_words(word, topn=5):

 try:

 similar_words = word_vectors.most_similar(word, topn=topn)

 return [word for word, similarity in similar_words]

 except KeyError:

 return []

def enrich_prompt(original_prompt):

 words = original_prompt.split()

 enriched_words = []

 for word in words:

 similar_words = get_similar_words(word, topn=2) # Get 2 similar words per word

 if similar_words:

 enriched_words.append(f"{word} ({', '.join(similar_words)})")

 else:

 enriched_words.append(word)

 return " ".join(enriched_words)

def mock_genai_response(prompt):

 if len(prompt.split()) > 10: # Enriched prompts are longer

 return f"Generated response to '{prompt}': This is a detailed and nuanced answer with rich context and

additional insights."

 else:

 return f"Generated response to '{prompt}': This is a concise and straightforward answer."

original_prompt = "Students from my class are tired of my subject"

enriched_prompt = enrich_prompt(original_prompt)

print(f"Original Prompt: {original_prompt}")

print(f"Enriched Prompt: {enriched_prompt}")

original_response = mock_genai_response(original_prompt)

enriched_response = mock_genai_response(enriched_prompt)

print("\nResponses:")

print(f"Original Response: {original_response}")

print(f"Enriched Response: {enriched_response}")

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 8

def compare_outputs(original, enriched):

 original_length = len(original.split())

 enriched_length = len(enriched.split())

 print("\nComparison:")

 print(f"Original Response Length: {original_length} words")

 print(f"Enriched Response Length: {enriched_length} words")

 print("Detail & Relevance Analysis:")

 if enriched_length > original_length:

 print("The enriched prompt produced a more detailed response due to added context from similar

words.")

 else:

 print("The enriched prompt did not significantly improve detail.")

compare_outputs(original_response, enriched_response)

Output:

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 9

Experiment 5

Aim: Use word embeddings to create meaningful sentences for creative tasks. Retrieve similar words for a

seed word. Create a sentence or story using these words as a starting point. Write a program that: Takes a seed

word. Generates similar words. Constructs a short paragraph using these words.

Code:

import random

import gensim.downloader as api

def load_model():

 return api.load("glove-wiki-gigaword-100")

def get_similar_words(model, seed, topn=5):

 if seed in model:

 return [w for w, _ in model.most_similar(seed, topn=topn)]

 else:

 return []

def make_paragraph(seed, similar_words):

 words = [seed] + similar_words

 random.shuffle(words)

 sentence = " ".join(f"{w}" for w in words[:-1])

 sentence += f" and finally {words[-1]}"

 return (

 f"Once upon a time, the notion of “{seed}” sparked imagination. "

 f"As ideas took shape, characters and scenes burst forth: {sentence}. "

 "Thus began a tale unlike any other."

)

def main():

 seed = input("Enter a seed word: ").strip().lower()

 print("Loading model…")

 model = load_model()

 print(f"Finding words similar to '{seed}'…")

 similars = get_similar_words(model, seed, topn=5)

 if not similars:

 print(f"Sorry, '{seed}' is not in the model vocabulary.")

 return

 print("Similar words:", similars)

 paragraph = make_paragraph(seed, similars)

 print("\nGenerated Paragraph:\n")

 print(paragraph)

if __name__ == "__main__":

 main()

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 10

Output:

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 11

Experiment 6

Aim: Use a pre-trained Hugging Face model to analyze sentiment in text. Assume a real-world application,

Load the sentiment analysis pipeline. Analyze the sentiment by giving sentences to input.

Code:

Step 1:

!pip install transformers

Step 2:

from transformers import pipeline

sentiment_analyzer = pipeline("sentiment-analysis")

sentences = [

 "I love using Hugging Face models, they are amazing!",

 "The weather today is terrible and I feel so sad.",

 "This is the best day of my life!",

 "I'm not sure how I feel about this."

]

results = sentiment_analyzer(sentences)

for sentence, result in zip(sentences, results):

 print(f"Sentence: {sentence}")

 print(f"Sentiment: {result['label']}, Confidence: {result['score']:.4f}")

 print("-" * 50)

Output:

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 12

Experiment 7

Aim: Summarize long texts using a pre-trained summarization model using Hugging face model. Load the

summarization pipeline. Take a passage as input and obtain the summarized text.

Code:

from transformers import pipeline

summarizer = pipeline("summarization")

passage = """

India, country that occupies the greater part of South Asia. It is made up of

28 states and eight union territories, and its national capital is New Delhi,

built in the 20th century just south of the historic hub of Old Delhi to serve

as India’s administrative center. Its government is a constitutional republic

that represents a highly diverse population consisting of thousands of ethnic

groups and hundreds of languages. India became the world’s most populous country

in 2023, according to estimates by the United Nations.

"""

summary = summarizer(passage, max_length=100, min_length=25, do_sample=False)

print(summary[0]['summary_text'])

Output:

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 13

Experiment 8

Aim: Install langchain, cohere (for key), langchain-community. Get the api key(By logging into Cohere and

obtaining the cohere key). Load a text document from your google drive . Create a prompt template to display

the output in a particular manner.

Code:

1)!pip install langchain

2)!pip install cohere

3)!pip install langchain-community

4)!pip install google-auth

5)!pip install google-auth-oauthlib

6)!pip install google-auth-httplib2

7)!pip install google-api-python-client==2.126.0

import os

os.environ["COHERE_API_KEY"] = "YOUR_COHERE_API_KEY"

import os

import io

from google.auth.transport.requests import Request

from google.oauth2.credentials import Credentials

from google_auth_oauthlib.flow import InstalledAppFlow

from googleapiclient.discovery import build

from googleapiclient.http import MediaIoBaseDownload

SCOPES = ['https://www.googleapis.com/auth/drive.readonly']

def authenticate_google_drive():

 creds = None

 if os.path.exists('token.json'):

 creds = Credentials.from_authorized_user_file('token.json', SCOPES)

 if not creds or not creds.valid:

 if creds and creds.expired and creds.refresh_token:

 creds.refresh(Request())

 else:

 flow = InstalledAppFlow.from_client_secrets_file('client_secret_1076587815690-

25iejnti0a9q29fr9d1tt497efgohaar.apps.googleusercontent.com.json', SCOPES)

 creds = flow.run_local_server(port=0)

 with open('token.json', 'w') as token:

 token.write(creds.to_json())

 return creds

def download_file_from_drive(file_id, output_file):

 creds = authenticate_google_drive()

 service = build('drive', 'v3', credentials=creds)

 request = service.files().get_media(fileId=file_id)

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 14

 fh = io.FileIO(output_file, 'wb')

 downloader = MediaIoBaseDownload(fh, request)

 done = False

 while done is False:

 status, done = downloader.next_chunk()

 print(f"Download {int(status.progress() * 100)}%.")

 print(f"File downloaded to {output_file}")

file_id = '1r1gDsmkgX0TLj47Ke9bgDUKtzwm3uI4Q'

output_file = 'GenAIpgm.txt'

download_file_from_drive(file_id, output_file)

Output:

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 15

Experiment 9

Aim: Take the Institution name as input. Use Pydantic to define the schema for the desired output and create

a custom output parser. Invoke the Chain and Fetch Results. Extract the below Institution related details from

Wikipedia: The founder of the Institution. When it was founded. The current branches in the institution . How

many employees are working in it. A brief 4-line summary of the institution.

Code:

Step 1:

!pip install wikipedia-api

Step 2:

from pydantic import BaseModel

from typing import List

import wikipediaapi

class InstitutionDetails(BaseModel):

 founder: str

 founded_year: int

 branches: List[str]

 employee_count: int

 summary: str

def fetch_wikipedia_data(institution_name: str) -> str:

 wiki_wiki = wikipediaapi.Wikipedia(language='en', user_agent='MyWikipediaBot/1.0')

 page = wiki_wiki.page(institution_name)

 if not page.exists():

 raise ValueError(f"Wikipedia page for '{institution_name}' not found.")

 return page.text

import re

def extract_institution_details(text: str) -> InstitutionDetails:

 founder_match = re.search(r"founded by ([\w\s]+)", text, re.IGNORECASE)

 founder = founder_match.group(1) if founder_match else "Unknown"

 year_match = re.search(r"founded in (\d{4})", text, re.IGNORECASE)

 founded_year = int(year_match.group(1)) if year_match else 0

 branches_match = re.findall(r"branches in ([\w\s]+)", text, re.IGNORECASE)

 branches = branches_match if branches_match else ["Unknown"]

 employee_match = re.search(r"(\d+,?\d*) employees", text, re.IGNORECASE)

 employee_count = int(employee_match.group(1).replace(",", "")) if employee_match else 0

 summary = "\n".join(text.split("\n")[:4])

 return InstitutionDetails(

 founder=founder,

 founded_year=founded_year,

 branches=branches,

 employee_count=employee_count,

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 16

 summary=summary

)

def get_institution_details(institution_name: str) -> InstitutionDetails:

 wiki_text = fetch_wikipedia_data(institution_name)

 details = extract_institution_details(wiki_text)

 return details

if __name__ == "__main__":

 institution_name = "MIT"

 details = get_institution_details(institution_name)

 print(details)

Output:

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 17

Experiment 10

Aim: Build a chatbot for the Indian Penal Code. We'll start by downloading the official Indian Penal Code

document, and then we'll create a chatbot that can interact with it. Users will be able to ask questions about

the Indian Penal Code and have a conversation with it.

Code:

import json

Load IPC JSON data

def load_ipc_data(file_path=r"D:\ipcc_multi_chapter.json"):

 with open(file_path, "r", encoding="utf-8") as file:

 return json.load(file)

Retrieve section details

def get_section_details(ipc_data, section_number):

 for chapter, details in ipc_data["Indian Penal Code"].items():

 if "sections" in details and section_number in details["sections"]:

 return details["sections"][section_number]

 return None

Simple chatbot function

def ipc_chatbot():

 ipc_data = load_ipc_data()

 print("\n⚖️ Welcome to the IPC Chatbot! Ask me about any IPC section (e.g., 'Tell me about Section 6').

Type 'exit' to quit. ⚖️\n")

 while True:

 user_input = input("You: ").strip().lower()

 if user_input == "exit":

 print("Exiting IPC Chatbot. Have a great day!")

 break

 # Extract section number

 words = user_input.split()

 section_number = None

 for i, word in enumerate(words):

 if word == "section" and i + 1 < len(words):

 section_number = "Section " + words[i + 1]

 break

 if section_number:

Generative AI (BAIL657C)

Department of Artificial Intelligence and Data Science, AITM, Belagavi 18

 details = get_section_details(ipc_data, section_number)

 if details:

 print(f"\n{section_number}: {details['title']}\n{details['description']}\n")

 else:

 print(f" Sorry, I couldn't find {section_number} in the IPC data.")

 else:

 print(" Please ask about a specific section (e.g., 'Tell me about Section 6').")

Run the chatbot

if __name__ == "__main__":

 ipc_chatbot()

In[]:

Output:

