SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI - 590 0009. AITM ’
(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi, ‘ /
Accredited by NAAC) -
DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

MongoDB

LAB MANUAL

IV Semester AI&DS

Designed By,
1. Prof. Vaibhav Chavan

2. Prof. Sagar Birje

Campus :Savagaon Road, Belagavi — 590 009. @ 0831 — 2438100, 2438123, Fax: 0831-2438197
Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

SURESH ANGADI EDUCATION FOUNDATION’S =

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT

Savagaon Road, BELAGAVI - 590 0009. AITM ’ 5
(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi, ‘ /
Accredited by NAAC) -

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Institute Vision

To become premier institute committed to academic excellence and global competence for the

holistic development of students.

Key words: academic excellence, global competence, holistic development.

Institute Mission

M1: Develop competent human resources, adopt outcome based education (OBE) and implement

cognitive assessment of students.

M2: Inculcate the traits of global competencies amongst the students.

M3: Nurture and train our students to have domain knowledge, develop the qualities of global

professionals and to have social consciousness for holistic development.

Department Vision

To deliver a quality and responsive education in the field of artificial intelligence and data science

emphasizing professional skills to face global challenges in the evolving IT paradigm.

Key words: quality and responsive, professional skills, global challenges.

Department Mission

M1: Leverage multiple pedagogical approaches to impart knowledge on the current and emerging Al

technologies.

M2: Develop an inclusive and holistic ambiance that bolsters problem solving, cognitive abilities and

critical thinking.

Campus :Savagaon Road, Belagavi — 590 009. @ 0831 — 2438100, 2438123, Fax: 0831-2438197
Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

SURESH ANGADI EDUCATION FOUNDATION’S =

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI - 590 0009. AITM ’ 5
(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi, ‘ /
Accredited by NAAC) -
DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

M3: Enable students to develop trust worthiness, team spirit, understanding law-of-the-land, social

behavior to be a global stake holder.

Program Specific Outcomes (PSOs):

PSO1: To apply core knowledge of Artificial Intelligence, Machine Learning, Deep Learning, Data
Science, Big Data Analytics and Statistical Learning to develop effective solutions for real-world

problems.

PSO2: To demonstrate proficiency in specialized and emerging technologies such as Natural
Language Processing, Cloud Computing, Robotic Process Automation, Storage Area Networks and the

Internet of Things to meet the stringent and diverse professional challenges.

PSO3: To imbibe managerial skills, social responsibility, ethical and moral values through courses in
Management and Entrepreneurship, Software Engineering Principles, Universal Human Values and

Ability Enhancement Programs to meet the industry and societal expectations.

Program Educational Objectives (PEOs)

PEO 1: Build a strong foundation in mathematics, core programming, artificial intelligence, machine
learning, and data science to enable graduates to analyze, design, and implement intelligent systems

for solving complex real-world problems.

PEO 2: Foster creativity, cognitive and research skills to analyze the requirements and technical

specifications of software to articulate novel engineering solutions for an efficient product design.

PEO 3: Prepare graduates for dynamic career opportunities in Al and Data Science by equipping them
with interdisciplinary knowledge, adaptability, and practical exposure to tools and techniques required

for industry and research.

PEO 4: Instill a strong sense of ethics, professional responsibility, and human values, empowering

graduates to contribute positively to society and lead with integrity in their professional domains.

Campus :Savagaon Road, Belagavi — 590 009. @ 0831 — 2438100, 2438123, Fax: 0831-2438197
Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI - 590 0009. AITM)
(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi, ‘ /
Accredited by NAAC) -
DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

PEO 5: Encourage graduates to pursue higher education, certification program, entrepreneurial

ventures, etc. by nurturing a mindset of continuous learning and awareness of global trends and

challenges.
INDEX
SI.No | Experiment Page No
1 a. [llustration of Where Clause, AND,OR operations in MongoDB. b. 1

Execute the Commands of MongoDB and operations in MongoDB :
Insert, Query, Update, Delete and Projection. (Note: use any collection)
2 a. Develop a MongoDB query to select certain fields and ignore some 12
fields of the documents from any collection. b. Develop a MongoDB
query to display the first 5 documents from the results obtained in a.
[use of limit and find]

3 a. Execute query selectors (comparison selectors, logical selectors) and 15
list out the results on any collection b. Execute query selectors
(Geospatial selectors, Bitwise selectors) and list out the results on any

collection

4 Create and demonstrate how projection operators ($, $elematch and 28
$slice) would be used in the MondoDB.

5 Execute Aggregation operations ($avg, $min,$max, $push, $addToSet 31

etc.). students encourage to execute several queries to demonstrate
various aggregation operators)

6 Execute Aggregation Pipeline and its operations (pipeline must contain 36
$match, $group, $sort, $project, $skip etc. students encourage to execute
several queries to demonstrate various aggregation operators)

7 a. Find all listings with listing_url, name, address, host_picture url in 39
the listings And Reviews collection that have a host with a picture url b.
Using E-commerce collection write a query to display reviews
summary.

8 a. Demonstrate creation of different types of indexes on collection 45
(unique, sparse, compound and multikey indexes) b. Demonstrate
optimization of queries using indexes.

9 a. Develop a query to demonstrate Text search using catalog data 47
collection for a given word b. Develop queries to illustrate excluding
documents with certain words and phrases

10 | Develop an aggregation pipeline to illustrate Text search on Catalog 49
data collection.

Campus :Savagaon Road, Belagavi — 590 009. @ 0831 — 2438100, 2438123, Fax: 0831-2438197
Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

MongoDB Lab Manual BDS456B

Experiment 1: 1a. Illustration of Where Clause, AND,OR operations in MongoDB.

//To create the new database as well as switch the database if not existing

use ProgrammingBooks

//To create the collection inside the database

db.createCollection("BookDetails")

//To insert the single value or document
db.BookDetails.insertOne({

_id: 1,

title: "Clean Code",

author: "Robert C. Martin",

category: "Software Development",

year: 2008
1)

//To insert the multiple values or documents
db.BookDetails.insertMany([

{ 1id: 1, title: "Clean Code", author: "Robert C. Martin", category: "Software Development",
year: 2008 },

{ 1id: 2, title: "JavaScript: The Good Parts", author: "Douglas Crockford", category:
"JavaScript", year: 2008 },

{ id: 3, title: "Design Patterns", author: "Erich Gamma", category: "Software Design", year:
1994 3},

{_id: 4, title: "Introduction to Algorithms", author: "Thomas H. Cormen", category:
"Algorithms", year: 2009 },

{ id: 5, title: "Python Crash Course", author: "Eric Matthes", category: "Python", year: 2015
}

s

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 1

MongoDB Lab Manual BDS456B

//Condition statement for where operator

db.BookDetails.find({ year: 2008 }).pretty()

OUTPUT

[
{
_id: 1,
title: 'Clean Code',
author: 'Robert C. Martin',
category: 'Software Development',
year: 2008
¥
{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'JavaScript',
year: 2008
§
]

//Condition statement for $and operator
db.BookDetails.find({
$and: [

{ category: "Software Development" },

{ year: 2008 }

]
})-pretty()

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

MongoDB Lab Manual BDS456B

OUTPUT

[
{
_id: 1,
title: 'Clean Code',
author: 'Robert C. Martin',
category: 'Software Development',

year: 2008

}

]
Using the $or Operator:

////Condition statement for $or operator
db.BookDetails.find({
$or: [
{ category: "JavaScript" },
{ year: 2015 }
]
})-pretty()

OUTPUT

[
{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'JavaScript',
year: 2008

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

MongoDB Lab Manual BDS456B

_id: 5,

title: 'Python Crash Course',
author: 'Eric Matthes',
category: 'Python',

year: 2015

1b. Execute the Commands of MongoDB and operations in MongoDB : Insert, Query,
Update, Delete and Projection. (Note: use any collection)

//To create the new database as well as switch the database if not existing

use Books

//To create the collection inside the database

db.createCollection("BookDetails")

//To insert the single value or document
db.BookDetails.insertOne({
_id: 1,
title: "The Pragmatic Programmer: Your Journey to Mastery",
author: "David Thomas, Andrew Hunt",
category: "Software Development",

year: 1999
1)

//To insert the multiple values or documents

db.BookDetails.insertMany([
{

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

MongoDB Lab Manual BDS456B

_id: 1,
title: "Clean Code: A Handbook of Agile Software Craftsmanship",
author: "Robert C. Martin",

category: "Software Development",

year: 2008
}s

{

_id: 2,

title: "JavaScript: The Good Parts",
author: "Douglas Crockford",
category: "JavaScript",

year: 2008

1

{

_id: 3,

title: "Design Patterns: Elements of Reusable Object-Oriented Software",
author: "Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides",
category: "Software Design",

year: 1994
¥

{
_id: 4,
title: "Introduction to Algorithms",
author: "Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein",
category: "Algorithms",
year: 1990
s

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

MongoDB Lab Manual BDS456B

_id: 5,

title: "Python Crash Course: A Hands-On, Project-Based Introduction to Programming",
author: "Eric Matthes",

category: "Python",

year: 2015

D

1. Find All Documents command...
db.BookDetails.find().pretty()

[
{
_id: 1,
title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'Robert C. Martin',
category: 'Software Development',
year: 2008
¥
{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'JavaScript',
year: 2008
¥
{
_1d: 3,
title: 'Design Patterns: Elements of Reusable Object-Oriented Software',
author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides',
category: 'Software Design',
year: 1994
s
{
_id: 4,
title: 'Introduction to Algorithms',
author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein',
category: 'Algorithms’,

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

MongoDB Lab Manual BDS456B

year: 1990

}s
{
_id: 5,
title: 'Python Crash Course: A Hands-On, Project-Based Introduction to
Programming',
author: 'Eric Matthes',
category: 'Python',
year: 2015
}
]

2. Find Documents Matching a Condition:

db.BookDetails.find({ year: { $gt: 2000 } }).pretty()

[
{
_id: 1,
title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'Robert C. Martin',
category: 'Software Development',
year: 2008
i
{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'JavaScript',
year: 2008
s
{
_1d: 5,
title: 'Python Crash Course: A Hands-On, Project-Based Introduction to
Programming',
author: 'Eric Matthes',
category: 'Python',
year: 2015
}
]

Update Operations:
//To insert the single value or document
db.BookDetails.updateOne(
{ title: "Clean Code: A Handbook of Agile Software Craftsmanship" },

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

MongoDB Lab Manual BDS456B

{ $set: { author: "vtucode" } }

)

//To see the updated result
db.BookDetails.find({ year: { $eq: 2008 } }).pretty()

[
{
_id: 1,
title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'vtucode',
category: 'Software Development',
year: 2008

55

{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'JavaScript',
year: 2008

}

]

//To insert the multiple values or documents
db.BookDetails.updateMany(

{ year: { $1t: 2010 } },

{ $set: { category: "vtucode website" } }

)

//To see the updated result
db.BookDetails.find({ year: { $it: 2010 } }).pretty()

[

{
_id: 1,
title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'vtucode',
category: 'vtucode website',
year: 2008

s

{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'vtucode website',

year: 2008

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

MongoDB Lab Manual BDS456B

s
{
_id: 3,
title: 'Design Patterns: Elements of Reusable Object-Oriented Software',
author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides',
category: 'vtucode website',
year: 1994
}s
{
_id: 4,
title: 'Introduction to Algorithms',
author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein',
category: 'vtucode website',
year: 1990

}
]

Delete Operations:
//To delete the single value or document
db.BookDetails.deleteOne({ id: 2 })

//To verify the deleted document
db.BookDetails.find({ id: 2 }).pretty()

//To delete the multiple values or documents
db.BookDetails.deleteMany({ year: { $lt: 1995 } })

//To verify the deleted document
db.BookDetails.find().pretty()

[
{
_id: 1,
title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'vtucode',
category: 'vtucode website',
year: 2008
5
{
_id: 5,
title: 'Python Crash Course: A Hands-On, Project-Based Introduction to
Programming',
author: 'Eric Matthes',
category: 'Python’,
year: 2015

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

MongoDB Lab Manual BDS456B

]

}

//To delete the all values or document
db.BookDetails.deleteMany({ })

//To verify the deleted document
db.BookDetails.find().pretty()

Projection Operations:

//To retrieve specific include field values or document
db.ProgrammingBooks.find({}, { title: 1, author: 1 })

[

{

_id: 1,

title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'Robert C. Martin'

1

{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford'

i

{
_1d: 3,
title: 'Design Patterns: Elements of Reusable Object-Oriented Software',
author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides'

1

{
_1d: 4,
title: 'Introduction to Algorithms',
author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein'

5

{
_id: 5,
title: 'Python Crash Course: A Hands-On, Project-Based Introduction to

Programming',

]

author: 'Eric Matthes'

}

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 10

MongoDB Lab Manual BDS456B

//To retrieve specific exclude field values or document
db.BookDetails.find({}, { year:0 })

[
{
_id: 1,
title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'Robert C. Martin',
category: 'Software Development'

1

{

_id: 2,

title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'JavaScript'

1

{
_id: 3,
title: 'Design Patterns: Elements of Reusable Object-Oriented Software',
author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides',
category: 'Software Design'

1

{
_1d: 4,
title: 'Introduction to Algorithms',
author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein’,
category: 'Algorithms'
}s

{
_1d: 5,
title: 'Python Crash Course: A Hands-On, Project-Based Introduction to
Programming',
author: 'Eric Matthes',
category: 'Python’
}
]

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 11

MongoDB Lab Manual BDS456B

Experiment 2: 2a. Develop a MongoDB query to select certain fields and ignore some
fields of the documents from any collection.

//To create the new database as well as switch the database if not existing

use Movies

//To create the collection inside the database

db.createCollection("MovieDetails")

//To insert the multiple values or documents
db.MovieDetails.insertMany([

{ 1id: 1, title: "Inception", director: "Christopher Nolan", genre: "Science Fiction", year:
2010, ratings: { imdb: 8.8, rottenTomatoes: 87 } },

{ id: 2, title: "The Matrix", director: "Wachowskis", genre: "Science Fiction", year: 1999,
ratings: { imdb: 8.7, rottenTomatoes: 87 } },

{ id: 3, title: "The Godfather", director: "Francis Ford Coppola", genre: "Crime", year:
1972, ratings: { imdb: 9.2, rottenTomatoes: 97 } }

Ds

Using projection to perform the query:

1. Including Specific Fields:

//To retrieve specific include field values or document

db.MovieDetails.find({}, { title: 1, director: 1 })

[
{ id: 1, title: 'Inception', director: 'Christopher Nolan' },

{ id: 2, title: 'The Matrix', director: "Wachowskis' },

{ _id: 3, title: 'The Godfather', director: 'Francis Ford Coppola' }

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 12

MongoDB Lab Manual BDS456B

2. Excluding Specific Fields:
//To retrieve specific exclude field values or document

db.MovieDetails.find({}, { ratings: 0 })

{
_id: 1,
title: 'Inception’,
director: 'Christopher Nolan',
genre: 'Science Fiction',
year: 2010

¥

{
_id: 2,
title: 'The Matrix’',
director: "Wachowskis',
genre: 'Science Fiction',
year: 1999

¥

{

_id: 3,

title: 'The Godfather',
director: 'Francis Ford Coppola’,
genre: 'Crime’,

year: 1972

// Combine query filter with a projection...

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 13

MongoDB Lab Manual BDS456B

db.MovieDetails.find({ director: "Christopher Nolan" }, { title: 1, year: 1, id: 0 })

[{ title: 'Inception’, year: 2010 }]

2b. Develop a MongoDB query to display the first 5 documents from the results obtained
in a. [use of limit and find] Using Above same Database

db.MovieDetails.insertMany([

{_id: 4, title: "Pulp Fiction", director: "Quentin Tarantino", genre: "Crime", year: 1994,
ratings: { imdb: 8.9, rottenTomatoes: 92 } },

{_id: 5, title: "The Shawshank Redemption", director: "Frank Darabont", genre:
"Drama", year: 1994, ratings: { imdb: 9.3, rottenTomatoes: 91 } },

{_id: 6, title: "The Dark Knight", director: "Christopher Nolan", genre: "Action", year:
2008, ratings: { imdb: 9.0, rottenTomatoes: 94 } },

{ id: 7, title: "Fight Club", director: "David Fincher", genre: "Drama", year: 1999,
ratings: { imdb: 8.8, rottenTomatoes: 79 } }

Ds

//Query with Projection and Limit command...

db.MovieDetails.find({}, { title: 1, director: 1, year: 1, id: 0 }).limit(5)

{ title: 'Inception’, director: 'Christopher Nolan', year: 2010 },

{ title: 'The Matrix', director: 'Wachowskis', year: 1999 },

{ title: 'The Godfather', director: 'Francis Ford Coppola', year: 1972 },
{ title: 'Pulp Fiction', director: 'Quentin Tarantino', year: 1994 },

{ title: 'The Shawshank Redemption', director: 'Frank Darabont', year: 1994 }

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 14

MongoDB Lab Manual BDS456B

Experiment 3: 3a. Execute query selectors (comparison selectors, logical selectors) and
list out the results on any collection.

//To create the new database as well as switch the database if not existing

use companyDB

//To insert the multiple values or documents
db.Employees.insertMany([

{ name: "Alice", age: 30, department: "HR", salary: 50000, joinDate: new Date("2015-01-
15") },

{ name: "Bob", age: 24, department: "Engineering", salary: 70000, joinDate: new
Date("2019-03-10") },

{ name: "Charlie", age: 29, department: "Engineering", salary: 75000, joinDate: new
Date("2017-06-23") 1,

{ name: "David", age: 35, department: "Marketing", salary: 60000, joinDate: new
Date("2014-11-01") },

{ name: "Eve", age: 28, department: "Finance", salary: 80000, joinDate: new Date("2018-
08-19") }

D

1. $eq (Equal): Find employees in the “Engineering” department.
db.Employees.find({ department: { $eq: "Engineering" } }).pretty()

[

{
_id: Objectld('666c18217d3bfalfeacdedf?"),

name: 'Bob’,

age: 24,

department: 'Engineering’,

salary: 70000,

joinDate: ISODate('2019-03-10T00:00:00.000Z")
s

{
_id: Objectld('666c¢18217d3bfalfeacdcdfy'),

name: 'Charlie’,

age: 29,

department: 'Engineering’,

salary: 75000,

joinDate: ISODate('2017-06-23T00:00:00.000Z")

}

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 15

MongoDB Lab Manual BDS456B

2. $ne (Not Equal): Find employees who are not in the “HR” department.
db.Employees.find({ department: { $ne: "HR" } }).pretty()

[
{
_id: Objectld('666c¢18217d3bfalfeacdcdf7"),
name: 'Bob’,
age: 24,
department: 'Engineering’,
salary: 70000,

joinDate: ISODate('2019-03-10T00:00:00.000Z")

'
{
_id: Objectld('666c18217d3bfalfeacdcdfy'),
name: 'Charlie',
age: 29,
department: 'Engineering’,
salary: 75000,

joinDate: ISODate('2017-06-23T00:00:00.000Z")

¥
{
_id: Objectld('666¢c18217d3bfalfeacdcdf9'),
name: 'David',
age: 35,
department: 'Marketing',
salary: 60000,

joinDate: ISODate('2014-11-01T00:00:00.000Z")

¥
{
_1d: Objectld('666¢c18217d3bfal feacdcdfa'),
name: 'Eve’,
age: 28,
department: 'Finance',
salary: 80000,

joinDate: ISODate('2018-08-19T00:00:00.000Z")

}
]

3. $gt (Greater Than): Find employees who are older than 30.

db.Employees.find({ age: { $gt: 30 } }).pretty()

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

16

MongoDB Lab Manual BDS456B

[

{

_1d: Objectld('666¢18217d3bfal feacdcdf9'),
name: 'David',

age: 35,

department: 'Marketing',

salary: 60000,

joinDate: ISODate('2014-11-01T00:00:00.000Z")

4.$1t (Less Than): Find employees with a salary less than 70000.
db.Employees.find({ salary: { $lt: 70000 } }).pretty()

[
{
_id: Objectld('666¢c18217d3bfalfeacdcdf6'),
name: 'Alice’,
age: 30,
department: 'HR',
salary: 50000,
joinDate: ISODate('2015-01-15T00:00:00.000Z")
¥
{
_id: Objectld('666c18217d3bfalfeacdcdf9'),
name: 'David',
age: 35,
department: 'Marketing',
salary: 60000,
joinDate: ISODate('2014-11-01T00:00:00.000Z")

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 17

MongoDB Lab Manual BDS456B

5. $gte (Greater Than or Equal): Find employees who joined on or after January 1, 2018.
db.Employees.find({ joinDate: { $gte: new Date("2018-01-01") } }).pretty()

[
{
_1d: Objectld('666¢18217d3bfal feacdcdf7'),
name: 'Bob’,
age: 24,
department: 'Engineering’,
salary: 70000,
joinDate: ISODate('2019-03-10T00:00:00.000Z")
¥
{
_id: Objectld('666c18217d3bfalfeacdcdfa’),
name: 'Eve’,
age: 28,
department: 'Finance',
salary: 80000,
joinDate: ISODate('2018-08-19T00:00:00.000Z")

6. $lte (Less Than or Equal): Find employees who are 28 years old or younger.

db.Employees.find({ age: { $lte: 28 } }).pretty()

[

{
_1d: Objectld('666¢c18217d3bfal feacdcdf7'),
name: 'Bob’,

age: 24,

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 18

MongoDB Lab Manual BDS456B

department: 'Engineering',

salary: 70000,

joinDate: ISODate('2019-03-10T00:00:00.000Z")
¥

{
_1d: Objectld('666¢c18217d3bfal feacdcdfa'),

name: 'Eve’',

age: 28,

department: 'Finance',

salary: 80000,

joinDate: ISODate('2018-08-19T00:00:00.000Z")

}
]

Queries Using Logical Selectors:

1. $and (Logical AND): Find employees who are in the “Engineering” department and
have a salary greater than 70000.

db.Employees.find({
$and: [
{ department: "Engineering" },
{ salary: { $gt: 70000 } }
]
})-pretty()

[

{
_1d: Objectld('666¢c18217d3bfal feacdcdfy'),

name: 'Charlie’,
age: 29,
department: 'Engineering’,

salary: 75000,

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

19

MongoDB Lab Manual BDS456B

joinDate: ISODate('2017-06-23T00:00:00.000Z")

}
]

2.%or (Logical OR): Find employees who are either in the “HR” department or have a salary
less than 60000.

db.Employees.find({
$or: [
{ department: "HR" },
{ salary: { $It: 60000 } }
]
})-pretty()

[
{
_id: Objectld('666¢18217d3bfalfeacdcdfo"),
name: 'Alice’,
age: 30,
department: 'HR',
salary: 50000,
joinDate: ISODate('2015-01-15T00:00:00.000Z")
}
]

3. $not (Logical NOT): Find employees who are not in the “Engineering” department.

db.Employees.find({
department: {
$not: { $eq: "Engineering" }
}
})-pretty()

[

{

_1d: Objectld('666¢c18217d3bfal feacdcdf6'),
name: 'Alice’,

age: 30,

department: 'HR',

salary: 50000,

joinDate: ISODate('2015-01-15T00:00:00.000Z")
s
{

_1d: Objectld('666¢c18217d3bfal feacdcdf9'),
name: 'David',

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 20

MongoDB Lab Manual BDS456B

age: 35,
department: 'Marketing',
salary: 60000,

joinDate: ISODate('2014-11-01T00:00:00.000Z")

}s
{
_id: Objectld('666c¢18217d3bfalfeacdcdfa’),
name: 'Eve’,
age: 28,
department: 'Finance',
salary: 80000,

joinDate: ISODate('2018-08-19T00:00:00.000Z")

}
]

3. $nor (Logical NOR): Find employees who are neither in the “HR” department nor

have a salary greater than 75000.

db.Employees.find({
$nor: [
{ department: "HR" },
{ salary: { $gt: 75000 } }
]
})-pretty()

[

{

_id: Objectld('666c18217d3bfalfeacdcdf7'),
name: 'Bob’,

age: 24,

department: 'Engineering’,

salary: 70000,

joinDate: ISODate(2019-03-10T00:00:00.000Z")
5
{

_id: Objectld('666c18217d3bfalfeacdcdfl'),

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

21

MongoDB Lab Manual BDS456B

name: 'Charlie’,

age: 29,

department: 'Engineering’,

salary: 75000,

joinDate: ISODate('2017-06-23T00:00:00.000Z")

i

{
_id: Objectld('666c¢18217d3bfalfeacdcdf9"),

name: 'David',

age: 35,

department: 'Marketing',

salary: 60000,

joinDate: ISODate('2014-11-01T00:00:00.000Z")

}
]

3b. Execute query selectors (Geospatial selectors, Bitwise selectors) and list out the

results on any collection.
Geospatial Selectors:
use geodatabase

db.Places.insertMany([

{ name: "Central Park", location: { type: "Point", coordinates: [-73.9654, 40.7829] } },

{ name: "Times Square", location: { type: "Point", coordinates: [-73.9851, 40.7580] } },

{ name: "Brooklyn Bridge", location: { type: "Point", coordinates: [-73.9969, 40.7061] } },

{ name: "Empire State Building", location: { type: "Point", coordinates: [-73.9857, 40.7488]

IS

{ name: "Statue of Liberty", location: { type: "Point", coordinates: [-74.0445, 40.6892] } }

D

// Create a geospatial index

db.Places.createIndex({ location: "2dsphere" })

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

22

MongoDB Lab Manual BDS456B

Geospatial Queries:

1. $near (Find places near a certain point): Find places near a specific coordinate, for

example, near Times Square.
db.Places.find({
location: {
$near: {
$geometry: {
type: "Point",
coordinates: [-73.9851, 40.7580]
¥
$maxDistance: 5000 // distance in meters
}
§
})-pretty()

[
{
_id: Objectld('666c25eb7d3bfal feacdcdfc'),
name: '"Times Square',
location: { type: 'Point', coordinates: [-73.9851, 40.758] }
¥
{
_id: Objectld('666¢25eb7d3bfalfeacdcdfe'),
name: 'Empire State Building',
location: { type: 'Point', coordinates: [-73.9857, 40.7488] }
¥
{
_id: Objectld('666c25eb7d3bfal feacdcdfb'),
name: 'Central Park’,
location: { type: 'Point', coordinates: [-73.9654, 40.7829 | }
}
]

2. $geoWithin (Find places within a specific area): Find places within a specific
polygon, for example, an area covering part of Manhattan.

db.Places.find({
location: {
$geoWithin: {
$geometry: {
type: "Polygon",

coordinates: [

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

23

MongoDB Lab Manual BDS456B

[-70.016, 35.715],
[-74.014, 40.717],
[-73.990, 40.730],
[-73.990, 40.715],
[-70.016, 35.715]

}
}
}
})-pretty()

[

{
_id: Objectld('666c25eb7d3bfal feacdcdfd'),

name: 'Brooklyn Bridge',

location: { type: 'Point', coordinates: [-73.9969, 40.7061] }

}
]

Bitwise Selectors:

use techDB

db.Devices.insertMany([
{ name: "Device A", status: 5 }, // Binary: 0101
{ name: "Device B", status: 3 }, // Binary: 0011
{ name: "Device C", status: 12 }, // Binary: 1100
{ name: "Device D", status: 10 }, // Binary: 1010

{ name: "Device E", status: 7 } // Binary: 0111
D

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

MongoDB Lab Manual BDS456B

Execute Bitwise Queries:

1. $bitsAllSet (Find documents where all bits are set): Find devices where the binary status
has both the 1st and 3rd bits set (binary mask 0101, or decimal 5).

db.Devices.find({
status: { $bitsAllSet: [0, 2] }

})-pretty()

[

{
_id: Objectld('666c¢28847d3bfalfeacdce00'"),

name: 'Device A',

status: 5

¥

{
_id: Objectld('666c¢28847d3bfalfeacdce04'),
name: 'Device E',

status: 7

}
]

2.$bitsAnySet (Find documents where any of the bits are set): Find devices where the binary
status has at least the 2nd bit set (binary mask 0010, or decimal 2).

db.Devices.find({
status: { $bitsAnySet: [1] }

})-pretty()
[

{
_1d: Objectld('666c28847d3bfalfeacdce0l"),

name: 'Device B',

status: 3

5

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 25

MongoDB Lab Manual BDS456B

{
_id: Objectld('666c¢28847d3bfalfeacdce03'),

name: 'Device D',
status: 10
}s

{
_id: Objectld('666c28847d3bfalfeacdce04'),

name: 'Device E',

status: 7

}
]

3.8bitsAllClear (Find documents where all bits are clear): Find devices where the binary
status has both the 2nd and 4th bits clear (binary mask 1010, or decimal 10).

db.Devices.find({
status: { $bitsAllClear: [1, 3] }

})-pretty()

[

{
_1d: Objectld('666c28847d3bfalfeacdce00'),

name: 'Device A,

status: 5

}
]

4. $bitsAnyClear (Find documents where any of the bits are clear): Find devices where the
binary status has at least the 1st bit clear (binary mask 0001, or decimal 1).
db.Devices.find({

status: { $bitsAnyClear: [0] }

})-pretty()

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

26

MongoDB Lab Manual BDS456B

{
_1d: Objectld('666c28847d3bfal feacdce02'),

name: 'Device C',

status: 12

i

{
_id: Objectld('666c28847d3bfalfeacdce03"),

name: 'Device D',

status: 10

}

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

27

MongoDB Lab Manual BDS456B

Experiment 4: Create and demonstrate how projection operators ($, $elematch and
$slice) would be used in the MongoDB.

use retailDB

db.Products.insertMany([
{
name: "Laptop",
brand: "BrandA",
features: [
{ name: "Processor", value: "Intel 17" },
{ name: "RAM", value: "16GB" },
{ name: "Storage", value: "512GB SSD" }
I,
reviews: [
{ user: "Alice", rating: 5, comment: "Excellent!" },
{ user: "Bob", rating: 4, comment: "Very good" },

{ user: "Charlie", rating: 3, comment: "Average" }

name: "Smartphone",
brand: "BrandB",
features: [
{ name: "Processor", value: "Snapdragon 888" },
{ name: "RAM", value: "8GB" },
{ name: "Storage", value: "256GB" }
I,
reviews: [
{ user: "Dave", rating: 4, comment: "Good phone" },

{ user: "Eve", rating: 2, comment: "Not satisfied" }

]

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

28

MongoDB Lab Manual BDS456B

D

Use Projection Operators:

1. $ Projection Operator: Find the product named “Laptop” and project the review from the
user “Alice”.

db.Products.find(
{ name: "Laptop", "reviews.user": "Alice" },
{ "reviews.$": 1 }

)-pretty()

{
_id: Objectld('666¢2f237d3bfalfeacdce0s'),

reviews: [{ user: 'Alice', rating: 5, comment: 'Excellent!" }]

}
]

2.$elemMatch Projection Operator: Find the product named “Laptop” and project the review
where the rating is greater than 4.

db.Products.find(
{ name: "Laptop" },
{ reviews: { $elemMatch: { rating: { $gt: 4 } } } }

).pretty()

{
_id: Objectld('666c2f237d3bfalfeacdce0s'),

reviews: [{ user: 'Alice', rating: 5, comment: 'Excellent!' }]

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 29

MongoDB Lab Manual BDS456B

;]

3. S$slice Projection Operator: Find the product named “Smartphone” and project the first
review.

db.Products.find(
{ name: "Smartphone" },
{ reviews: { $slice: 1 } }

).pretty()

{
_id: Objectld('666c2f237d3bfalfeacdce06'),

name: 'Smartphone’,
brand: 'BrandB',
features: [
{ name: "Processor’, value: 'Snapdragon 888' },
{ name: 'RAM, value: '8GB' },
{ name: 'Storage', value: '256GB' }
I
reviews: [{ user: 'Dave', rating: 4, comment: 'Good phone' }]
}
]

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 30

MongoDB Lab Manual BDS456B

Experiment 5: Execute Aggregation operations ($avg, $min,$max, $push, $addToSet

etc.). students encourage to execute several queries to demonstrate various aggregation

operators)

use salesDB

db.Sales.insertMany([

{ date: new Date("2024-01-01"), product:

" Amar" }’

{ date: new Date("2024-01-02"), product:

"Babu" }’

{ date: new Date("2024-01-03"), product:

"Chandra" },

{ date: new Date("2024-01-04"), product:

"Amar" }’

{ date: new Date("2024-01-05"), product:

"Babu" },

{ date: new Date("2024-01-06"), product:

”DeVa" }

D

Execute Aggregation Operations:

"Laptop", price: 1200, quantity: 1, customer:

"Laptop", price: 1200, quantity: 2, customer:

"Mouse", price: 25, quantity: 5, customer:

"Keyboard", price: 45, quantity: 3, customer:

"Monitor", price: 300, quantity: 1, customer:

"Laptop", price: 1200, quantity: 1, customer:

1. $avg (Average): Calculate the average price of each product.

db.Sales.aggregate(|
{
$group: {
_id: "$product",
averagePrice: { $avg: "$price" }
}
b
D)-pretty()

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

31

MongoDB Lab Manual BDS456B

{ id: 'Laptop', averagePrice: 1200 },
{ id: 'Keyboard', averagePrice: 45 },
{ id: 'Mouse', averagePrice: 25 },

{ id: 'Monitor', averagePrice: 300 }

2. $min (Minimum): Find the minimum price of each product.

db.Sales.aggregate([
{
$group: {
_id: "$product",
minPrice: { $min: "$price" }
}
}
])-pretty()

{ id: 'Mouse', minPrice: 25 },
{ 1d: 'Keyboard', minPrice: 45 },
{ _id: 'Monitor', minPrice: 300 },

{ _id: 'Laptop', minPrice: 1200 }

3.$max (Maximum): Find the maximum price of each product.

db.Sales.aggregate([
{
$group: {
_id: "$product",
maxPrice: { $max: "$price" }
}
}
])-pretty()

[

{ id: 'Mouse', maxPrice: 25 },

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

32

MongoDB Lab Manual BDS456B

{ id: 'Keyboard', maxPrice: 45 },

{ id: 'Monitor', maxPrice: 300 },

{ id: 'Laptop', maxPrice: 1200 }
]

4. S$push (Push Values to an Array): Group sales by customer and push each purchased
product into an array.

db.Sales.aggregate([
{
$group: {
_id: "$customer",

products: { $push: "$product" }

}
}
]).pretty()

{ id: 'Babu', products: ['Laptop', 'Monitor'] },
{ id: 'Amar’, products: ['Laptop', 'Keyboard'] },
{ _id: 'Chandra', products: ['Mouse'] },

{ id: 'Deva', products: ['Laptop' | }

5.8addToSet (Add Unique Values to an Array): Group sales by customer and add each unique

purchased product to an array.
db.Sales.aggregate([
{
$group: {
_id: "$customer",
uniqueProducts: { $addToSet: "$product” }
}

}
D-pretty()

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

33

MongoDB Lab Manual BDS456B

{ id: 'Amar', uniqueProducts: ['Keyboard', 'Laptop' | },

{ id: 'Babu', uniqueProducts: ['Monitor', 'Laptop'] },

{ id: 'Deva', uniqueProducts: ['Laptop' | },

{ id: 'Chandra', uniqueProducts: ['Mouse' | }]
Combining Aggregation Operations:

1. Calculate the total quantity and total sales amount for each product, and list all customers
who purchased each product.

db.Sales.aggregate(|
{
$group: {
_id: "$product",
totalQuantity: { $sum: "$quantity" },
totalSales: { $sum: { $Smultiply: ["Sprice", "$quantity"] } },
customers: { $addToSet: "$customer" }
}
}
]).pretty()

{
_id: 'Mouse',
totalQuantity: 5,
totalSales: 125,
customers: ['Chandra’ |
s
{
_1d: 'Keyboard',
totalQuantity: 3,
totalSales: 135,

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

34

MongoDB Lab Manual BDS456B

customers: ['Amar' |

55

{
_id: 'Monitor",
totalQuantity: 1,
totalSales: 300,
customers: ['Babu' |

55

{

_id: 'Laptop',
totalQuantity: 4,
totalSales: 4800,

customers: ['Amar', 'Babu', 'Deva’ |

}

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 35

MongoDB Lab Manual BDS456B

Experiment 6: Execute Aggregation Pipeline and its operations (pipeline must contain
$match, $group, $sort, Sproject, $skip etc. students encourage to execute several queries
to demonstrate various aggregation operators)

use restaurantDB
db.restaurants.insertMany([
{
name: "Biryani House",
cuisine: "Indian",
location: "Jayanagar",
reviews: [
{ user: "Aarav", rating: 5, comment: "Amazing biryani!" },

{ user: "Bhavana", rating: 4, comment: "Great place!" }

name: "Burger Joint",
cuisine: "American",
location: "Koramangala",
reviews: [
{ user: "Chirag", rating: 3, comment: "Average burger" },

{ user: "Devika", rating: 4, comment: "Good value" }

name: "Pasta House",
cuisine: "Italian",
location: "Rajajinagar",
reviews: [
{ user: "Esha", rating: 5, comment: "Delicious pasta!" },

{ user: "Farhan", rating: 4, comment: "Nice ambiance" }

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 36

MongoDB Lab Manual BDS456B

1
{

name: "Curry Palace",
cuisine: "Indian",
location: "Jayanagar",

reviews: [

{ user: "Gaurav", rating: 4, comment: "Spicy and tasty!" },

user: "Harini", rating: 5, comment: "Best curry in town!"
5 g9,

]
1
{

name: "Taco Stand",
cuisine: "Mexican",
location: "Jayanagar",

reviews: [

{ user: "Ishaan", rating: 5, comment: "Fantastic tacos!" },

user: "Jaya", rating: 4, comment: "Very authentic"
y g ry

}
D

Aggregation Pipeline and its operations:

1. Execute Aggregation Pipeline and its operations (pipeline must contain match, group, sort,

project, $skip etc.)
db.restaurants.aggregate(|
{
$match: {

"location": "Jayanagar"

h
I3
{

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

37

MongoDB Lab Manual BDS456B

$unwind: "$reviews"

}s
{
$group: {
_id: "$name",
averageRating: { $avg: "$reviews.rating" },

totalReviews: { $sum: 1 }

j
i

{
$sort: {

averageRating: -1
}
i
{
$project: {
_id: 0,
restaurant: "$_id",
averageRating: 1,
totalReviews: 1
}
i
{
$skip: 1
}
])-pretty()

{ averageRating: 4.5, totalReviews: 2, restaurant: 'Curry Palace' },

{ averageRating: 4.5, totalReviews: 2, restaurant: "Taco Stand' }]

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 38

MongoDB Lab Manual BDS456B

Experiment 7: 7a. a. Find all listings with listing_url, name, address, host _picture url in
the listings And Reviews collection that have a host with a picture url.

use vacationRentals

db.listingsAndReviews.insertMany([

{

listing_url: "http://www.example.com/listing/123456",

name: "Beautiful Apartment",

address: {
street: "123 Main Street",
suburb: "Central",
city: "Metropolis",
country: "Wonderland"

¥

host: {

name: "Alice",

picture url: "http://www.example.com/images/host/host123.jpg"

}
¥

{
listing_url: "http://www.example.com/listing/654321",

name: "Cozy Cottage",
address: {
street: "456 Another St",
suburb: "North",
city: "Smallville",
country: "Wonderland"
s
host: {
name: "Bob",

picture url: ""

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 39

MongoDB Lab Manual BDS456B

listing_url: "http://www.example.com/listing/789012",
name: "Modern Condo",
address: {
street: "789 Side Road",
suburb: "East",
city: "Gotham",
country: "Wonderland"
¥
host: {
name: "Charlie",

picture url: "http://www.example.com/images/host/host789.jpg"

j
j
)

Query to Find Listings with Host Picture URLSs:

Now that the collection is set up, you can run the query to find all listings

with listing_url, name, address, and host picture url where the host has a picture URL.

db.listingsAndReviews.find(
{

"host.picture_url": { $exists: true, $ne: "" }
5

{

listing_url: 1,

name: 1,

address: 1,

"host.picture_url": 1

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

40

MongoDB Lab Manual BDS456B

}
)-pretty()

[

{
_1d: Objectld('666c40ce85a7615d27cdcdfb'),

listing_url: 'http://www.example.com/listing/123456',
name: 'Beautiful Apartment',
address: {
street: '123 Main Street',
suburb: 'Central',
city: 'Metropolis',
country: "Wonderland'
¥
host: { picture_url: 'http://www.example.com/images/host/host123.jpg' }
¥

{
_1d: Objectld('666c40ce85a7615d27cdcdfd"),

listing_url: 'http://www.example.com/listing/789012',
name: 'Modern Condo',
address: {
street: '789 Side Road',
suburb: 'East’,
city: 'Gotham',
country: "Wonderland'
s
host: { picture url: 'http://www.example.com/images/host/host789.jpg' }
b
]

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

MongoDB Lab Manual BDS456B

7b. Using E-commerce collection write a query to display reviews summary.

use ecommerce
db.products.insertMany(|
{
product id: 1,
name: "Laptop",
category: "Electronics",
price: 1200,
reviews: [
{ user: "Alice", rating: 5, comment: "Excellent!" },
{ user: "Bob", rating: 4, comment: "Very good" },

{ user: "Charlie", rating: 3, comment: "Average" }

product id: 2,

name: "Smartphone",

category: "Electronics",

price: 800,

reviews: [
{ user: "Dave", rating: 4, comment: "Good phone" },
{ user: "Eve", rating: 2, comment: "Not satisfied" },

{ user: "Frank", rating: 5, comment: "Amazing!" }

]
5
{

product _id: 3,

name: "Headphones",
category: "Accessories",

price: 150,

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

MongoDB Lab Manual BDS456B

reviews: [

{ user: "Grace", rating: 5, comment: "Great sound" },

{ user: "Heidi", rating: 3, comment: "Okay" }

j
D

To display a summary of reviews in an e-commerce collection, we can assume
the ecommerce database contains a products collection with documents structured to include
reviews. Each product document could have a reviews array with review details such as

rating, comment, and user.
db.products.aggregate([
{
$unwind: "$reviews"
¥
{
$group: {
_id: "$name",

totalReviews: { $sum: 1 },

averageRating: { $avg: "$reviews.rating" },

comments: { $push: "$reviews.comment" }

¥
{
$project: {
_id: 0,
product: "$_id",
totalReviews: 1,
averageRating: 1,
comments: 1

;3 Dopretty()

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

43

MongoDB Lab Manual BDS456B

totalReviews: 3,
averageRating: 4,
comments: ['Excellent!', 'Very good', 'Average' |,

product: 'Laptop'
¥

totalReviews: 3,
averageRating: 3.6666666666666665,
comments: ['Good phone', 'Not satisfied', '"Amazing!'],

product: 'Smartphone'
¥

totalReviews: 2,
averageRating: 4,
comments: ['Great sound', 'Okay' |,

product: 'Headphones'

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

44

MongoDB Lab Manual BDS456B

Experiment 8: a. Demonstrate creation of different types of indexes on collection (unique,

sparse, compound and multikey indexes)
/I Switch to the restaurantDB database

use restaurantDB

// Insert sample documents into the restaurants collection
db.restaurants.insertMany([
{
name: "Biryani House",
cuisine: "Indian",
location: "Downtown",

reviews: [

{ user: "Aarav", rating: 5, comment: "Amazing biryani!" },
{ user: "Bhavana", rating: 4, comment: "Great place!" }
I,
contact: { phone: "1234567890", email: "contact@biryanihouse.com" }

1
{

name: "Curry Palace",
cuisine: "Indian",
location: "Downtown",

reviews: [

{ user: "Gaurav", rating: 4, comment: "Spicy and tasty!" },
{ user: "Harini", rating: 5, comment: "Best curry in town!" }
1,
contact: { phone: "0987654321", email: "contact@currypalace.com" }
s
{

name: "Taco Stand",
cuisine: "Mexican",

location: "Downtown",

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 45

MongoDB Lab Manual BDS456B

reviews: [
{ user: "Ishaan", rating: 5, comment: "Fantastic tacos!" },

{ user: "Jaya", rating: 4, comment: "Very authentic" }

I,
contact: { phone: "1122334455", email: "contact@tacostand.com" }

D

// Create a unique index on the contact.email field

db.restaurants.createIlndex({ "contact.email": 1 }, { unique: true })

/I Create a sparse index on the location field

db.restaurants.createlndex({ location: 1 }, { sparse: true })

/I Create a compound index on the name and location fields

db.restaurants.createIndex({ name: 1, location: 1 })

// Create a multikey index on the reviews field

db.restaurants.createlndex({ reviews: 1 })

// Verify the created indexes

db.restaurants.getIndexes()

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

46

MongoDB Lab Manual BDS456B

Program 9: a. Develop a query to demonstrate Text search using catalog data collection
for a given word

Create a text index on the fields you want to search
{

"id": 1,

"title": "Wireless Bluetooth Headphones",

"description": "High-quality sound with noise cancellation"

db.catalog.createIndex({ title: "text", description: "text" })

Perform a text search query for a given word
db.catalog.find(

{ $text: { $search: "Bluetooth" } },

{ score: { $meta: "textScore" } } // To get relevance score

).sort({ score: { $meta: "textScore" } })

b. Develop queries to illustrate excluding documents with certain words and phrases
MongoDB Text Search (Exclude documents containing a word)
db.collection.find({

$text: { $search: "some keyword" },

"field": { $not: /excludedWord/i }
1)

db.collection.find({
$text: { $search: "some keyword" },

"field": { $not: /apple/i }
$)

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 47

MongoDB Lab Manual BDS456B

Elasticsearch Query DSL

{
"query": {
"bool": {
"must": {
"match": { "content": "searchTerm" }
}s
"must_not": {
"match": { "content": "excludedWord" }
}
}
}
}

MongoDB Aggregation with Text Search Excluding

If you want to exclude documents containing "spam" in the text indexed

db.collection.aggregate(|
{
$match: {

$text: { $search: "yourSearchTerm" }

}
5

{
$match: {

"content": { $not: /spam/i }
}
)

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

48

MongoDB Lab Manual BDS456B

Experiment 10: Develop an aggregation pipeline to illustrate Text search on Catalog
data collection.

Aggregation Pipeline for Text Search on catalog Collection:
db.catalog.aggregate(|
{
$match: {
$text: { $search: "your search keywords" }
}
55

{
$addFields: {

score: { $meta: "textScore" }
}
¥
{

$sort: { score: -1 }
i
{

$project: {

title: 1,

description: 1,

price: 1,

score: 1

D

db.catalog.aggregate([

{
$match: {

$text: { $search: "wireless headphones" }

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 49

MongoDB Lab Manual BDS456B

h
1

{
$addFields: {

score: { $meta: "textScore" }

h
§s
{
$sort: { score: -1 }
¥
{
$project: {
title: 1,
description: 1,
price: 1,
score: 1
h
}
D

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

50

MongoDB Lab Manual BDS456B

Experiment 10:

Dept. of Artificail intelligence & Data Science, AITM, Belagavi

51

