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Experiment 1: 1a. Illustration of Where Clause, AND,OR operations in MongoDB. 

 

//To create the new database as well as switch the database if not existing 

use ProgrammingBooks 

 

//To create the collection inside the database 

db.createCollection("BookDetails") 

 

//To insert the single value or document 

db.BookDetails.insertOne({ 

  _id: 1, 

  title: "Clean Code",  

  author: "Robert C. Martin",  

  category: "Software Development",  

  year: 2008 

}) 

 

//To insert the multiple values or documents 

db.BookDetails.insertMany([ 

{_id: 1, title: "Clean Code", author: "Robert C. Martin", category: "Software Development", 

year: 2008 }, 

{_id: 2,  title: "JavaScript: The Good Parts", author: "Douglas Crockford", category: 

"JavaScript", year: 2008 }, 

{_id: 3,  title: "Design Patterns", author: "Erich Gamma", category: "Software Design", year: 

1994 }, 

{_id: 4,  title: "Introduction to Algorithms", author: "Thomas H. Cormen", category: 

"Algorithms", year: 2009 }, 

{_id: 5,  title: "Python Crash Course", author: "Eric Matthes", category: "Python", year: 2015 

} 

]); 
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//Condition statement for where operator 

db.BookDetails.find({ year: 2008 }).pretty() 

 

OUTPUT 

[ 

  { 

    _id: 1, 

    title: 'Clean Code', 

    author: 'Robert C. Martin', 

    category: 'Software Development', 

    year: 2008 

  }, 

  { 

    _id: 2, 

    title: 'JavaScript: The Good Parts', 

    author: 'Douglas Crockford', 

    category: 'JavaScript', 

    year: 2008 

  } 

] 

 

//Condition statement for $and operator 

db.BookDetails.find({ 

$and: [ 

  { category: "Software Development" }, 

  { year: 2008 } 

 ]  

 }).pretty() 
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OUTPUT 

[ 

  { 

    _id: 1, 

    title: 'Clean Code', 

    author: 'Robert C. Martin', 

    category: 'Software Development', 

    year: 2008 

  } 

] 

Using the $or Operator: 

 

////Condition statement for $or operator 

db.BookDetails.find({ 

$or: [ 

    { category: "JavaScript" }, 

    { year: 2015 } 

  ] 

  }).pretty() 

 

OUTPUT 

 

[ 

  { 

    _id: 2, 

    title: 'JavaScript: The Good Parts', 

    author: 'Douglas Crockford', 

    category: 'JavaScript', 

    year: 2008 
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  }, 

  { 

    _id: 5, 

    title: 'Python Crash Course', 

    author: 'Eric Matthes', 

    category: 'Python', 

    year: 2015 

  } 

] 

 

1b. Execute the Commands of MongoDB and operations in MongoDB : Insert, Query, 

Update, Delete and Projection. (Note: use any collection) 

 

//To create the new database as well as switch the database if not existing 

use Books 

 

//To create the collection inside the database 

db.createCollection("BookDetails") 

 

//To insert the single value or document 

db.BookDetails.insertOne({ 

  _id: 1, 

  title: "The Pragmatic Programmer: Your Journey to Mastery", 

  author: "David Thomas, Andrew Hunt", 

  category: "Software Development", 

  year: 1999 

}) 

 

//To insert the multiple values or documents 

db.BookDetails.insertMany([ 

  { 
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    _id: 1, 

    title: "Clean Code: A Handbook of Agile Software Craftsmanship", 

    author: "Robert C. Martin", 

    category: "Software Development", 

    year: 2008 

  }, 

   

  { 

    _id: 2, 

    title: "JavaScript: The Good Parts", 

    author: "Douglas Crockford", 

    category: "JavaScript", 

    year: 2008 

  }, 

   

  { 

    _id: 3, 

    title: "Design Patterns: Elements of Reusable Object-Oriented Software", 

    author: "Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides", 

    category: "Software Design", 

    year: 1994 

  }, 

   

  { 

    _id: 4, 

    title: "Introduction to Algorithms", 

    author: "Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein", 

    category: "Algorithms", 

    year: 1990 

  }, 
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  { 

    _id: 5, 

    title: "Python Crash Course: A Hands-On, Project-Based Introduction to Programming", 

    author: "Eric Matthes", 

    category: "Python", 

    year: 2015 

  } 

]) 

 

1. Find All Documents command… 

db.BookDetails.find().pretty() 

 

[ 

  { 

    _id: 1, 

    title: 'Clean Code: A Handbook of Agile Software Craftsmanship', 

    author: 'Robert C. Martin', 

    category: 'Software Development', 

    year: 2008 

  }, 

  { 

    _id: 2, 

    title: 'JavaScript: The Good Parts', 

    author: 'Douglas Crockford', 

    category: 'JavaScript', 

    year: 2008 

  }, 

  { 

    _id: 3, 

    title: 'Design Patterns: Elements of Reusable Object-Oriented Software', 

    author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides', 

    category: 'Software Design', 

    year: 1994 

  }, 

  { 

    _id: 4, 

    title: 'Introduction to Algorithms', 

    author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford 

Stein', 

    category: 'Algorithms', 
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    year: 1990 

  }, 

  { 

    _id: 5, 

    title: 'Python Crash Course: A Hands-On, Project-Based Introduction to 

Programming', 

    author: 'Eric Matthes', 

    category: 'Python', 

    year: 2015 

  } 

] 

 

2. Find Documents Matching a Condition: 

 

db.BookDetails.find({ year: { $gt: 2000 } }).pretty() 

 

[ 

  { 

    _id: 1, 

    title: 'Clean Code: A Handbook of Agile Software Craftsmanship', 

    author: 'Robert C. Martin', 

    category: 'Software Development', 

    year: 2008 

  }, 

  { 

    _id: 2, 

    title: 'JavaScript: The Good Parts', 

    author: 'Douglas Crockford', 

    category: 'JavaScript', 

    year: 2008 

  }, 

  { 

    _id: 5, 

    title: 'Python Crash Course: A Hands-On, Project-Based Introduction to 

Programming', 

    author: 'Eric Matthes', 

    category: 'Python', 

    year: 2015 

  } 

] 

 

 

Update Operations: 

//To insert the single value or document 

db.BookDetails.updateOne( 

  { title: "Clean Code: A Handbook of Agile Software Craftsmanship" }, 
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  { $set: { author: "vtucode" } } 

) 

 

//To see the updated result 

db.BookDetails.find({ year: { $eq: 2008 } }).pretty() 

 

[ 

  { 

    _id: 1, 

    title: 'Clean Code: A Handbook of Agile Software Craftsmanship', 

    author: 'vtucode', 

    category: 'Software Development', 

    year: 2008 

  }, 

  { 

    _id: 2, 

    title: 'JavaScript: The Good Parts', 

    author: 'Douglas Crockford', 

    category: 'JavaScript', 

    year: 2008 

  } 

] 

 

//To insert the multiple values or documents 

db.BookDetails.updateMany( 

  { year: { $lt: 2010 } }, 

  { $set: { category: "vtucode website" } } 

) 

 

//To see the updated result 

db.BookDetails.find({ year: { $lt: 2010 } }).pretty() 

 

[ 

  { 

    _id: 1, 

    title: 'Clean Code: A Handbook of Agile Software Craftsmanship', 

    author: 'vtucode', 

    category: 'vtucode website', 

    year: 2008 

  }, 

  { 

    _id: 2, 

    title: 'JavaScript: The Good Parts', 

    author: 'Douglas Crockford', 

    category: 'vtucode website', 

    year: 2008 
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  }, 

  { 

    _id: 3, 

    title: 'Design Patterns: Elements of Reusable Object-Oriented Software', 

    author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides', 

    category: 'vtucode website', 

    year: 1994 

  }, 

  { 

    _id: 4, 

    title: 'Introduction to Algorithms', 

    author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford 

Stein', 

    category: 'vtucode website', 

    year: 1990 

  } 

] 

 

Delete Operations: 

//To delete the single value or document 

db.BookDetails.deleteOne({ _id: 2 }) 

 

//To verify the deleted document 

db.BookDetails.find({ _id: 2 }).pretty() 

 

//To delete the multiple values or documents 

db.BookDetails.deleteMany({ year: { $lt: 1995 } }) 

 

//To verify the deleted document 

db.BookDetails.find().pretty() 

 

[ 

  { 

    _id: 1, 

    title: 'Clean Code: A Handbook of Agile Software Craftsmanship', 

    author: 'vtucode', 

    category: 'vtucode website', 

    year: 2008 

  }, 

  { 

    _id: 5, 

    title: 'Python Crash Course: A Hands-On, Project-Based Introduction to 

Programming', 

    author: 'Eric Matthes', 

    category: 'Python', 

    year: 2015 
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  } 

] 

 

//To delete the all values or document 

db.BookDetails.deleteMany({ }) 

 

//To verify the deleted document 

db.BookDetails.find().pretty() 

 

Projection Operations: 

 

//To retrieve specific include field values or document 

db.ProgrammingBooks.find({}, { title: 1, author: 1 }) 

 

[ 

  { 

    _id: 1, 

    title: 'Clean Code: A Handbook of Agile Software Craftsmanship', 

    author: 'Robert C. Martin' 

  }, 

   

  { 

    _id: 2, 

    title: 'JavaScript: The Good Parts', 

    author: 'Douglas Crockford' 

  }, 

   

  { 

    _id: 3, 

    title: 'Design Patterns: Elements of Reusable Object-Oriented Software', 

    author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides' 

  }, 

   

  { 

    _id: 4, 

    title: 'Introduction to Algorithms', 

    author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein' 

  }, 

   

  { 

    _id: 5, 

    title: 'Python Crash Course: A Hands-On, Project-Based Introduction to 

Programming', 

    author: 'Eric Matthes' 

  } 

] 



                                                                                                                       MongoDB Lab Manual BDS456B 

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 11 
 

 

//To retrieve specific exclude field values or document 

db.BookDetails.find({}, { year:0 } ) 

 

[ 

  { 

    _id: 1, 

    title: 'Clean Code: A Handbook of Agile Software Craftsmanship', 

    author: 'Robert C. Martin', 

    category: 'Software Development' 

  }, 

   

  { 

    _id: 2, 

    title: 'JavaScript: The Good Parts', 

    author: 'Douglas Crockford', 

    category: 'JavaScript' 

  }, 

   

  { 

    _id: 3, 

    title: 'Design Patterns: Elements of Reusable Object-Oriented Software', 

    author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides', 

    category: 'Software Design' 

  }, 

   

  { 

    _id: 4, 

    title: 'Introduction to Algorithms', 

    author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford 

Stein', 

    category: 'Algorithms' 

  }, 

   

  { 

    _id: 5, 

    title: 'Python Crash Course: A Hands-On, Project-Based Introduction to 

Programming', 

    author: 'Eric Matthes', 

    category: 'Python' 

  } 

] 
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Experiment 2: 2a. Develop a MongoDB query to select certain fields and ignore some 

fields of the documents from any collection. 

 

//To create the new database as well as switch the database if not existing 

use Movies 

 

//To create the collection inside the database 

db.createCollection("MovieDetails") 

 

//To insert the multiple values or documents 

db.MovieDetails.insertMany([ 

  { _id: 1, title: "Inception", director: "Christopher Nolan", genre: "Science Fiction", year: 

2010, ratings: { imdb: 8.8, rottenTomatoes: 87 } }, 

  { _id: 2, title: "The Matrix", director: "Wachowskis", genre: "Science Fiction", year: 1999, 

ratings: { imdb: 8.7, rottenTomatoes: 87 } }, 

  { _id: 3, title: "The Godfather", director: "Francis Ford Coppola", genre: "Crime", year: 

1972, ratings: { imdb: 9.2, rottenTomatoes: 97 } } 

]); 

 

Using projection to perform the query: 

1. Including Specific Fields: 

 

//To retrieve specific include field values or document 

db.MovieDetails.find({}, { title: 1, director: 1 }) 

 

[ 

  { _id: 1, title: 'Inception', director: 'Christopher Nolan' }, 

  { _id: 2, title: 'The Matrix', director: 'Wachowskis' }, 

  { _id: 3, title: 'The Godfather', director: 'Francis Ford Coppola' } 

] 

3 
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2. Excluding Specific Fields: 

//To retrieve specific exclude field values or document 

db.MovieDetails.find({}, { ratings: 0 }) 

 

[ 

  { 

    _id: 1, 

    title: 'Inception', 

    director: 'Christopher Nolan', 

    genre: 'Science Fiction', 

    year: 2010 

  }, 

  { 

    _id: 2, 

    title: 'The Matrix', 

    director: 'Wachowskis', 

    genre: 'Science Fiction', 

    year: 1999 

  }, 

  { 

    _id: 3, 

    title: 'The Godfather', 

    director: 'Francis Ford Coppola', 

    genre: 'Crime', 

    year: 1972 

  } 

] 

 

// Combine query filter with a projection... 
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db.MovieDetails.find({ director: "Christopher Nolan" }, { title: 1, year: 1, _id: 0 }) 

 

[ { title: 'Inception', year: 2010 } ] 

 

2b. Develop a MongoDB query to display the first 5 documents from the results obtained 

in a. [use of limit and find] Using Above same Database 

 

db.MovieDetails.insertMany([ 

  {_id: 4, title: "Pulp Fiction", director: "Quentin Tarantino", genre: "Crime", year: 1994, 

ratings: { imdb: 8.9, rottenTomatoes: 92 } }, 

  {_id: 5, title: "The Shawshank Redemption", director: "Frank Darabont", genre: 

"Drama", year: 1994, ratings: { imdb: 9.3, rottenTomatoes: 91 } }, 

  {_id: 6, title: "The Dark Knight", director: "Christopher Nolan", genre: "Action", year: 

2008, ratings: { imdb: 9.0, rottenTomatoes: 94 } }, 

  {_id: 7, title: "Fight Club", director: "David Fincher", genre: "Drama", year: 1999, 

ratings: { imdb: 8.8, rottenTomatoes: 79 } } 

]); 

 

//Query with Projection and Limit command... 

db.MovieDetails.find({}, { title: 1, director: 1, year: 1, _id: 0 }).limit(5) 

 

[ 

  { title: 'Inception', director: 'Christopher Nolan', year: 2010 }, 

  { title: 'The Matrix', director: 'Wachowskis', year: 1999 }, 

  { title: 'The Godfather', director: 'Francis Ford Coppola', year: 1972 }, 

  { title: 'Pulp Fiction', director: 'Quentin Tarantino', year: 1994 }, 

  { title: 'The Shawshank Redemption', director: 'Frank Darabont', year: 1994 } 

] 
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Experiment 3: 3a. Execute query selectors (comparison selectors, logical selectors ) and 

list out the results on any collection. 

//To create the new database as well as switch the database if not existing 

use companyDB 

 

//To insert the multiple values or documents 

db.Employees.insertMany([ 

  { name: "Alice", age: 30, department: "HR", salary: 50000, joinDate: new Date("2015-01-

15") }, 

  { name: "Bob", age: 24, department: "Engineering", salary: 70000, joinDate: new 

Date("2019-03-10") }, 

  { name: "Charlie", age: 29, department: "Engineering", salary: 75000, joinDate: new 

Date("2017-06-23") }, 

  { name: "David", age: 35, department: "Marketing", salary: 60000, joinDate: new 

Date("2014-11-01") }, 

  { name: "Eve", age: 28, department: "Finance", salary: 80000, joinDate: new Date("2018-

08-19") } 

]) 

 

1. $eq (Equal): Find employees in the “Engineering” department. 

db.Employees.find({ department: { $eq: "Engineering" } }).pretty() 

 

[ 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf7'), 

    name: 'Bob', 

    age: 24, 

    department: 'Engineering', 

    salary: 70000, 

    joinDate: ISODate('2019-03-10T00:00:00.000Z') 

  }, 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf8'), 

    name: 'Charlie', 

    age: 29, 

    department: 'Engineering', 

    salary: 75000, 

    joinDate: ISODate('2017-06-23T00:00:00.000Z') 

  } 
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] 

 

 

 

2. $ne (Not Equal): Find employees who are not in the “HR” department. 

db.Employees.find({ department: { $ne: "HR" } }).pretty() 

 

[ 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf7'), 

    name: 'Bob', 

    age: 24, 

    department: 'Engineering', 

    salary: 70000, 

    joinDate: ISODate('2019-03-10T00:00:00.000Z') 

  }, 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf8'), 

    name: 'Charlie', 

    age: 29, 

    department: 'Engineering', 

    salary: 75000, 

    joinDate: ISODate('2017-06-23T00:00:00.000Z') 

  }, 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf9'), 

    name: 'David', 

    age: 35, 

    department: 'Marketing', 

    salary: 60000, 

    joinDate: ISODate('2014-11-01T00:00:00.000Z') 

  }, 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdfa'), 

    name: 'Eve', 

    age: 28, 

    department: 'Finance', 

    salary: 80000, 

    joinDate: ISODate('2018-08-19T00:00:00.000Z') 

  } 

] 

 

3. $gt (Greater Than): Find employees who are older than 30. 

 

db.Employees.find({ age: { $gt: 30 } }).pretty() 
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[ 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf9'), 

    name: 'David', 

    age: 35, 

    department: 'Marketing', 

    salary: 60000, 

    joinDate: ISODate('2014-11-01T00:00:00.000Z') 

  } 

] 

 

4.$lt (Less Than): Find employees with a salary less than 70000. 

db.Employees.find({ salary: { $lt: 70000 } }).pretty() 

 

[ 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf6'), 

    name: 'Alice', 

    age: 30, 

    department: 'HR', 

    salary: 50000, 

    joinDate: ISODate('2015-01-15T00:00:00.000Z') 

  }, 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf9'), 

    name: 'David', 

    age: 35, 

    department: 'Marketing', 

    salary: 60000, 

    joinDate: ISODate('2014-11-01T00:00:00.000Z') 

  } 

] 
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5. $gte (Greater Than or Equal): Find employees who joined on or after January 1, 2018. 

db.Employees.find({ joinDate: { $gte: new Date("2018-01-01") } }).pretty() 

 

[ 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf7'), 

    name: 'Bob', 

    age: 24, 

    department: 'Engineering', 

    salary: 70000, 

    joinDate: ISODate('2019-03-10T00:00:00.000Z') 

  }, 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdfa'), 

    name: 'Eve', 

    age: 28, 

    department: 'Finance', 

    salary: 80000, 

    joinDate: ISODate('2018-08-19T00:00:00.000Z') 

  } 

] 

 

6. $lte (Less Than or Equal): Find employees who are 28 years old or younger. 

 

db.Employees.find({ age: { $lte: 28 } }).pretty() 

 

[ 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf7'), 

    name: 'Bob', 

    age: 24, 
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    department: 'Engineering', 

    salary: 70000, 

    joinDate: ISODate('2019-03-10T00:00:00.000Z') 

  }, 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdfa'), 

    name: 'Eve', 

    age: 28, 

    department: 'Finance', 

    salary: 80000, 

    joinDate: ISODate('2018-08-19T00:00:00.000Z') 

  } 

] 

 

Queries Using Logical Selectors: 

1. $and (Logical AND): Find employees who are in the “Engineering” department and 

have a salary greater than 70000. 

db.Employees.find({  

  $and: [ 

    { department: "Engineering" }, 

    { salary: { $gt: 70000 } } 

  ]  

}).pretty() 

 

[ 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf8'), 

    name: 'Charlie', 

    age: 29, 

    department: 'Engineering', 

    salary: 75000, 



                                                                                                                       MongoDB Lab Manual BDS456B 

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 20 
 

    joinDate: ISODate('2017-06-23T00:00:00.000Z') 

  } 

] 

 

2.$or (Logical OR): Find employees who are either in the “HR” department or have a salary 

less than 60000. 

db.Employees.find({  

  $or: [ 

    { department: "HR" }, 

    { salary: { $lt: 60000 } } 

  ]  

}).pretty() 

 

[ 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf6'), 

    name: 'Alice', 

    age: 30, 

    department: 'HR', 

    salary: 50000, 

    joinDate: ISODate('2015-01-15T00:00:00.000Z') 

  } 

] 

 

3. $not (Logical NOT): Find employees who are not in the “Engineering” department. 

 

db.Employees.find({  

  department: {  

    $not: { $eq: "Engineering" }  

  }  

}).pretty() 

 

[ 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf6'), 

    name: 'Alice', 

    age: 30, 

    department: 'HR', 

    salary: 50000, 

    joinDate: ISODate('2015-01-15T00:00:00.000Z') 

  }, 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf9'), 

    name: 'David', 
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    age: 35, 

    department: 'Marketing', 

    salary: 60000, 

    joinDate: ISODate('2014-11-01T00:00:00.000Z') 

  }, 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdfa'), 

    name: 'Eve', 

    age: 28, 

    department: 'Finance', 

    salary: 80000, 

    joinDate: ISODate('2018-08-19T00:00:00.000Z') 

  } 

] 

 

3. $nor (Logical NOR): Find employees who are neither in the “HR” department nor 

have a salary greater than 75000. 

 

   db.Employees.find({  

  $nor: [ 

    { department: "HR" }, 

    { salary: { $gt: 75000 } } 

  ]  

}).pretty() 

 

[ 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf7'), 

    name: 'Bob', 

    age: 24, 

    department: 'Engineering', 

    salary: 70000, 

    joinDate: ISODate('2019-03-10T00:00:00.000Z') 

  }, 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf8'), 
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    name: 'Charlie', 

    age: 29, 

    department: 'Engineering', 

    salary: 75000, 

    joinDate: ISODate('2017-06-23T00:00:00.000Z') 

  }, 

  { 

    _id: ObjectId('666c18217d3bfa1feacdcdf9'), 

    name: 'David', 

    age: 35, 

    department: 'Marketing', 

    salary: 60000, 

    joinDate: ISODate('2014-11-01T00:00:00.000Z') 

  } 

] 

3b. Execute query selectors (Geospatial selectors, Bitwise selectors ) and list out the 

results on any collection. 

Geospatial Selectors: 

use geodatabase 

db.Places.insertMany([ 

  { name: "Central Park", location: { type: "Point", coordinates: [-73.9654, 40.7829] } }, 

  { name: "Times Square", location: { type: "Point", coordinates: [-73.9851, 40.7580] } }, 

  { name: "Brooklyn Bridge", location: { type: "Point", coordinates: [-73.9969, 40.7061] } }, 

  { name: "Empire State Building", location: { type: "Point", coordinates: [-73.9857, 40.7488] 

} }, 

  { name: "Statue of Liberty", location: { type: "Point", coordinates: [-74.0445, 40.6892] } } 

]) 

 

// Create a geospatial index 

db.Places.createIndex({ location: "2dsphere" }) 
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Geospatial Queries: 

1. $near (Find places near a certain point): Find places near a specific coordinate, for 

example, near Times Square. 

db.Places.find({ 

  location: { 

    $near: { 

      $geometry: { 

        type: "Point", 

        coordinates: [-73.9851, 40.7580] 

      }, 

      $maxDistance: 5000 // distance in meters 

    } 

  } 

}).pretty() 

 

[ 

  { 

    _id: ObjectId('666c25eb7d3bfa1feacdcdfc'), 

    name: 'Times Square', 

    location: { type: 'Point', coordinates: [ -73.9851, 40.758 ] } 

  }, 

  { 

    _id: ObjectId('666c25eb7d3bfa1feacdcdfe'), 

    name: 'Empire State Building', 

    location: { type: 'Point', coordinates: [ -73.9857, 40.7488 ] } 

  }, 

  { 

    _id: ObjectId('666c25eb7d3bfa1feacdcdfb'), 

    name: 'Central Park', 

    location: { type: 'Point', coordinates: [ -73.9654, 40.7829 ] } 

  } 

] 

 

2. $geoWithin (Find places within a specific area): Find places within a specific 

polygon, for example, an area covering part of Manhattan. 

 

db.Places.find({ 

  location: { 

    $geoWithin: { 

      $geometry: { 

        type: "Polygon", 

        coordinates: [ 
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          [ 

            [-70.016, 35.715], 

            [-74.014, 40.717], 

            [-73.990, 40.730], 

            [-73.990, 40.715], 

            [-70.016, 35.715] 

          ] 

        ] 

      } 

    } 

  } 

}).pretty() 

 

[ 

  { 

    _id: ObjectId('666c25eb7d3bfa1feacdcdfd'), 

    name: 'Brooklyn Bridge', 

    location: { type: 'Point', coordinates: [ -73.9969, 40.7061 ] } 

  } 

] 

 

Bitwise Selectors: 

use techDB 

db.Devices.insertMany([ 

  { name: "Device A", status: 5 }, // Binary: 0101 

  { name: "Device B", status: 3 }, // Binary: 0011 

  { name: "Device C", status: 12 }, // Binary: 1100 

  { name: "Device D", status: 10 }, // Binary: 1010 

  { name: "Device E", status: 7 }  // Binary: 0111 

]) 
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Execute Bitwise Queries: 

1. $bitsAllSet (Find documents where all bits are set): Find devices where the binary status 

has both the 1st and 3rd bits set (binary mask 0101, or decimal 5). 

db.Devices.find({ 

  status: { $bitsAllSet: [0, 2] } 

}).pretty() 

 

[ 

  { 

    _id: ObjectId('666c28847d3bfa1feacdce00'), 

    name: 'Device A', 

    status: 5 

  }, 

  { 

    _id: ObjectId('666c28847d3bfa1feacdce04'), 

    name: 'Device E', 

    status: 7 

  } 

] 

2.$bitsAnySet (Find documents where any of the bits are set): Find devices where the binary 

status has at least the 2nd bit set (binary mask 0010, or decimal 2). 

db.Devices.find({ 

  status: { $bitsAnySet: [1] } 

}).pretty() 

[ 

  { 

    _id: ObjectId('666c28847d3bfa1feacdce01'), 

    name: 'Device B', 

    status: 3 

  }, 
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  { 

    _id: ObjectId('666c28847d3bfa1feacdce03'), 

    name: 'Device D', 

    status: 10 

  }, 

  { 

    _id: ObjectId('666c28847d3bfa1feacdce04'), 

    name: 'Device E', 

    status: 7 

  } 

] 

 

3.$bitsAllClear (Find documents where all bits are clear): Find devices where the binary 

status has both the 2nd and 4th bits clear (binary mask 1010, or decimal 10). 

db.Devices.find({ 

  status: { $bitsAllClear: [1, 3] } 

}).pretty() 

 

[ 

  { 

    _id: ObjectId('666c28847d3bfa1feacdce00'), 

    name: 'Device A', 

    status: 5 

  } 

] 

4. $bitsAnyClear (Find documents where any of the bits are clear): Find devices where the 

binary status has at least the 1st bit clear (binary mask 0001, or decimal 1). 

db.Devices.find({ 

  status: { $bitsAnyClear: [0] } 

}).pretty() 
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[ 

  { 

    _id: ObjectId('666c28847d3bfa1feacdce02'), 

    name: 'Device C', 

    status: 12 

  }, 

  { 

    _id: ObjectId('666c28847d3bfa1feacdce03'), 

    name: 'Device D', 

    status: 10 

  } 

] 
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Experiment 4: Create and demonstrate how projection operators ($, $elematch and 

$slice) would be used in the MongoDB. 

use retailDB 

 

db.Products.insertMany([ 

  { 

    name: "Laptop", 

    brand: "BrandA", 

    features: [ 

      { name: "Processor", value: "Intel i7" }, 

      { name: "RAM", value: "16GB" }, 

      { name: "Storage", value: "512GB SSD" } 

    ], 

    reviews: [ 

      { user: "Alice", rating: 5, comment: "Excellent!" }, 

      { user: "Bob", rating: 4, comment: "Very good" }, 

      { user: "Charlie", rating: 3, comment: "Average" } 

    ] 

  }, 

  { 

    name: "Smartphone", 

    brand: "BrandB", 

    features: [ 

      { name: "Processor", value: "Snapdragon 888" }, 

      { name: "RAM", value: "8GB" }, 

      { name: "Storage", value: "256GB" } 

    ], 

    reviews: [ 

      { user: "Dave", rating: 4, comment: "Good phone" }, 

      { user: "Eve", rating: 2, comment: "Not satisfied" } 

    ] 
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  } 

]) 

 

Use Projection Operators: 

1. $ Projection Operator: Find the product named “Laptop” and project the review from the 

user “Alice”. 

 

db.Products.find( 

  { name: "Laptop", "reviews.user": "Alice" }, 

  { "reviews.$": 1 } 

).pretty() 

 

[ 

  { 

    _id: ObjectId('666c2f237d3bfa1feacdce05'), 

    reviews: [ { user: 'Alice', rating: 5, comment: 'Excellent!' } ] 

  } 

] 

 

2.$elemMatch Projection Operator: Find the product named “Laptop” and project the review 

where the rating is greater than 4. 

 

db.Products.find( 

  { name: "Laptop" }, 

  { reviews: { $elemMatch: { rating: { $gt: 4 } } } } 

).pretty() 

 

[ 

  { 

    _id: ObjectId('666c2f237d3bfa1feacdce05'), 

    reviews: [ { user: 'Alice', rating: 5, comment: 'Excellent!' } ] 
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  } ] 

3. $slice Projection Operator: Find the product named “Smartphone” and project the first 

review. 

db.Products.find( 

  { name: "Smartphone" }, 

  { reviews: { $slice: 1 } } 

).pretty() 

 

[ 

  { 

    _id: ObjectId('666c2f237d3bfa1feacdce06'), 

    name: 'Smartphone', 

    brand: 'BrandB', 

    features: [ 

      { name: 'Processor', value: 'Snapdragon 888' }, 

      { name: 'RAM', value: '8GB' }, 

      { name: 'Storage', value: '256GB' } 

    ], 

    reviews: [ { user: 'Dave', rating: 4, comment: 'Good phone' } ] 

  } 

] 
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Experiment 5: Execute Aggregation operations ($avg, $min,$max, $push, $addToSet 

etc.). students encourage to execute several queries to demonstrate various aggregation 

operators) 

 

use salesDB 

 

db.Sales.insertMany([ 

  { date: new Date("2024-01-01"), product: "Laptop", price: 1200, quantity: 1, customer: 

"Amar" }, 

  { date: new Date("2024-01-02"), product: "Laptop", price: 1200, quantity: 2, customer: 

"Babu" }, 

  { date: new Date("2024-01-03"), product: "Mouse", price: 25, quantity: 5, customer: 

"Chandra" }, 

  { date: new Date("2024-01-04"), product: "Keyboard", price: 45, quantity: 3, customer: 

"Amar" }, 

  { date: new Date("2024-01-05"), product: "Monitor", price: 300, quantity: 1, customer: 

"Babu" }, 

  { date: new Date("2024-01-06"), product: "Laptop", price: 1200, quantity: 1, customer: 

"Deva" } 

]) 

 

Execute Aggregation Operations: 

1. $avg (Average): Calculate the average price of each product. 

db.Sales.aggregate([ 

  { 

    $group: { 

      _id: "$product", 

      averagePrice: { $avg: "$price" } 

    } 

  } 

]).pretty() 

 

[ 
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  { _id: 'Laptop', averagePrice: 1200 }, 

  { _id: 'Keyboard', averagePrice: 45 }, 

  { _id: 'Mouse', averagePrice: 25 }, 

  { _id: 'Monitor', averagePrice: 300 } 

] 

2. $min (Minimum): Find the minimum price of each product. 

db.Sales.aggregate([ 

  { 

    $group: { 

      _id: "$product", 

      minPrice: { $min: "$price" } 

    } 

  } 

]).pretty() 

 

[ 

  { _id: 'Mouse', minPrice: 25 }, 

  { _id: 'Keyboard', minPrice: 45 }, 

  { _id: 'Monitor', minPrice: 300 }, 

  { _id: 'Laptop', minPrice: 1200 } 

] 

 

3.$max (Maximum): Find the maximum price of each product. 

db.Sales.aggregate([ 

  { 

    $group: { 

      _id: "$product", 

      maxPrice: { $max: "$price" } 

    } 

  } 

]).pretty() 

 

[ 

  { _id: 'Mouse', maxPrice: 25 }, 
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  { _id: 'Keyboard', maxPrice: 45 }, 

  { _id: 'Monitor', maxPrice: 300 }, 

  { _id: 'Laptop', maxPrice: 1200 } 

] 

 

4. $push (Push Values to an Array): Group sales by customer and push each purchased 

product into an array. 

db.Sales.aggregate([ 

  { 

    $group: { 

      _id: "$customer", 

      products: { $push: "$product" } 

    } 

  } 

]).pretty() 

 

[ 

  { _id: 'Babu', products: [ 'Laptop', 'Monitor' ] }, 

  { _id: 'Amar', products: [ 'Laptop', 'Keyboard' ] }, 

  { _id: 'Chandra', products: [ 'Mouse' ] }, 

  { _id: 'Deva', products: [ 'Laptop' ] } 

] 

 

5.$addToSet (Add Unique Values to an Array): Group sales by customer and add each unique 

purchased product to an array. 

db.Sales.aggregate([ 

  { 

    $group: { 

      _id: "$customer", 

      uniqueProducts: { $addToSet: "$product" } 

    } 

  } 

]).pretty() 
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[ 

  { _id: 'Amar', uniqueProducts: [ 'Keyboard', 'Laptop' ] }, 

  { _id: 'Babu', uniqueProducts: [ 'Monitor', 'Laptop' ] }, 

  { _id: 'Deva', uniqueProducts: [ 'Laptop' ] }, 

  { _id: 'Chandra', uniqueProducts: [ 'Mouse' ] } ] 

Combining Aggregation Operations: 

1. Calculate the total quantity and total sales amount for each product, and list all customers 

who purchased each product. 

db.Sales.aggregate([ 

  { 

    $group: { 

      _id: "$product", 

      totalQuantity: { $sum: "$quantity" }, 

      totalSales: { $sum: { $multiply: ["$price", "$quantity"] } }, 

      customers: { $addToSet: "$customer" } 

    } 

  } 

]).pretty() 

 

[ 

  { 

    _id: 'Mouse', 

    totalQuantity: 5, 

    totalSales: 125, 

    customers: [ 'Chandra' ] 

  }, 

  { 

    _id: 'Keyboard', 

    totalQuantity: 3, 

    totalSales: 135, 
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    customers: [ 'Amar' ] 

  }, 

  { 

    _id: 'Monitor', 

    totalQuantity: 1, 

    totalSales: 300, 

    customers: [ 'Babu' ] 

  }, 

  { 

    _id: 'Laptop', 

    totalQuantity: 4, 

    totalSales: 4800, 

    customers: [ 'Amar', 'Babu', 'Deva' ] 

  } 

] 
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Experiment 6: Execute Aggregation Pipeline and its operations (pipeline must contain 

$match, $group, $sort, $project, $skip etc. students encourage to execute several queries 

to demonstrate various aggregation operators) 

 

use restaurantDB 

db.restaurants.insertMany([ 

  { 

    name: "Biryani House", 

    cuisine: "Indian", 

    location: "Jayanagar", 

    reviews: [ 

      { user: "Aarav", rating: 5, comment: "Amazing biryani!" }, 

      { user: "Bhavana", rating: 4, comment: "Great place!" } 

    ] 

  }, 

  { 

    name: "Burger Joint", 

    cuisine: "American", 

    location: "Koramangala", 

    reviews: [ 

      { user: "Chirag", rating: 3, comment: "Average burger" }, 

      { user: "Devika", rating: 4, comment: "Good value" } 

    ] 

  }, 

  { 

    name: "Pasta House", 

    cuisine: "Italian", 

    location: "Rajajinagar", 

    reviews: [ 

      { user: "Esha", rating: 5, comment: "Delicious pasta!" }, 

      { user: "Farhan", rating: 4, comment: "Nice ambiance" } 
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    ] 

  }, 

  { 

    name: "Curry Palace", 

    cuisine: "Indian", 

    location: "Jayanagar", 

    reviews: [ 

      { user: "Gaurav", rating: 4, comment: "Spicy and tasty!" }, 

      { user: "Harini", rating: 5, comment: "Best curry in town!" } 

    ] 

  }, 

  { 

    name: "Taco Stand", 

    cuisine: "Mexican", 

    location: "Jayanagar", 

    reviews: [ 

      { user: "Ishaan", rating: 5, comment: "Fantastic tacos!" }, 

      { user: "Jaya", rating: 4, comment: "Very authentic" } 

    ] 

  } 

]) 

Aggregation Pipeline and its operations: 

1. Execute Aggregation Pipeline and its operations (pipeline must contain match, group, sort, 

project, $skip etc.) 

db.restaurants.aggregate([ 

  { 

    $match: { 

      "location": "Jayanagar" 

    } 

  }, 

  { 
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    $unwind: "$reviews"   

  }, 

  { 

    $group: { 

      _id: "$name", 

      averageRating: { $avg: "$reviews.rating" }, 

      totalReviews: { $sum: 1 } 

    } 

  }, 

  { 

    $sort: { 

      averageRating: -1 

    } 

  }, 

  { 

    $project: { 

      _id: 0, 

      restaurant: "$_id", 

      averageRating: 1, 

      totalReviews: 1 

    } 

  }, 

  { 

    $skip: 1 

  } 

]).pretty() 

 

[ 

  { averageRating: 4.5, totalReviews: 2, restaurant: 'Curry Palace' }, 

  { averageRating: 4.5, totalReviews: 2, restaurant: 'Taco Stand' } ] 
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Experiment 7: 7a. a. Find all listings with listing_url, name, address, host_picture_url in 

the listings And Reviews collection that have a host with a picture url. 

use vacationRentals 

 

db.listingsAndReviews.insertMany([ 

  { 

    listing_url: "http://www.example.com/listing/123456", 

    name: "Beautiful Apartment", 

    address: { 

      street: "123 Main Street", 

      suburb: "Central", 

      city: "Metropolis", 

      country: "Wonderland" 

    }, 

    host: { 

      name: "Alice", 

      picture_url: "http://www.example.com/images/host/host123.jpg" 

    } 

  }, 

  { 

    listing_url: "http://www.example.com/listing/654321", 

    name: "Cozy Cottage", 

    address: { 

      street: "456 Another St", 

      suburb: "North", 

      city: "Smallville", 

      country: "Wonderland" 

    }, 

    host: { 

      name: "Bob", 

      picture_url: "" 
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    } 

  }, 

  { 

    listing_url: "http://www.example.com/listing/789012", 

    name: "Modern Condo", 

    address: { 

      street: "789 Side Road", 

      suburb: "East", 

      city: "Gotham", 

      country: "Wonderland" 

    }, 

    host: { 

      name: "Charlie", 

      picture_url: "http://www.example.com/images/host/host789.jpg" 

    } 

  } 

]) 

 

Query to Find Listings with Host Picture URLs: 

 Now that the collection is set up, you can run the query to find all listings  

with listing_url, name, address, and host_picture_url where the host has a picture URL. 

 

db.listingsAndReviews.find( 

  { 

    "host.picture_url": { $exists: true, $ne: "" } 

  }, 

  { 

    listing_url: 1, 

    name: 1, 

    address: 1, 

    "host.picture_url": 1 



                                                                                                                       MongoDB Lab Manual BDS456B 

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 41 
 

  } 

).pretty() 

 

[ 

  { 

    _id: ObjectId('666c40ce85a7615d27cdcdfb'), 

    listing_url: 'http://www.example.com/listing/123456', 

    name: 'Beautiful Apartment', 

    address: { 

      street: '123 Main Street', 

      suburb: 'Central', 

      city: 'Metropolis', 

      country: 'Wonderland' 

    }, 

    host: { picture_url: 'http://www.example.com/images/host/host123.jpg' } 

  }, 

  { 

    _id: ObjectId('666c40ce85a7615d27cdcdfd'), 

    listing_url: 'http://www.example.com/listing/789012', 

    name: 'Modern Condo', 

    address: { 

      street: '789 Side Road', 

      suburb: 'East', 

      city: 'Gotham', 

      country: 'Wonderland' 

    }, 

    host: { picture_url: 'http://www.example.com/images/host/host789.jpg' } 

  } 

] 
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7b. Using E-commerce collection write a query to display reviews summary. 

 

use ecommerce 

db.products.insertMany([ 

  { 

    product_id: 1, 

    name: "Laptop", 

    category: "Electronics", 

    price: 1200, 

    reviews: [ 

      { user: "Alice", rating: 5, comment: "Excellent!" }, 

      { user: "Bob", rating: 4, comment: "Very good" }, 

      { user: "Charlie", rating: 3, comment: "Average" } 

    ] 

  }, 

  { 

    product_id: 2, 

    name: "Smartphone", 

    category: "Electronics", 

    price: 800, 

    reviews: [ 

      { user: "Dave", rating: 4, comment: "Good phone" }, 

      { user: "Eve", rating: 2, comment: "Not satisfied" }, 

      { user: "Frank", rating: 5, comment: "Amazing!" } 

    ] 

  }, 

  { 

    product_id: 3, 

    name: "Headphones", 

    category: "Accessories", 

    price: 150, 
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    reviews: [ 

      { user: "Grace", rating: 5, comment: "Great sound" }, 

      { user: "Heidi", rating: 3, comment: "Okay" } 

    ] 

  } 

]) 

To display a summary of reviews in an e-commerce collection, we can assume 

the ecommerce database contains a products collection with documents structured to include 

reviews. Each product document could have a reviews array with review details such as 

rating, comment, and user. 

db.products.aggregate([ 

  { 

    $unwind: "$reviews" 

  }, 

  { 

    $group: { 

      _id: "$name", 

      totalReviews: { $sum: 1 }, 

      averageRating: { $avg: "$reviews.rating" }, 

      comments: { $push: "$reviews.comment" } 

    } 

  }, 

  { 

    $project: { 

      _id: 0, 

      product: "$_id", 

      totalReviews: 1, 

      averageRating: 1, 

      comments: 1 

    }  } ]).pretty() 

 

[ 
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  { 

    totalReviews: 3, 

    averageRating: 4, 

    comments: [ 'Excellent!', 'Very good', 'Average' ], 

    product: 'Laptop' 

  }, 

  { 

    totalReviews: 3, 

    averageRating: 3.6666666666666665, 

    comments: [ 'Good phone', 'Not satisfied', 'Amazing!' ], 

    product: 'Smartphone' 

  }, 

  { 

    totalReviews: 2, 

    averageRating: 4, 

    comments: [ 'Great sound', 'Okay' ], 

    product: 'Headphones' 

  } 

] 
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Experiment 8: a. Demonstrate creation of different types of indexes on collection (unique, 

sparse, compound and multikey indexes) 

// Switch to the restaurantDB database 

use restaurantDB 

 

// Insert sample documents into the restaurants collection 

db.restaurants.insertMany([ 

  { 

    name: "Biryani House", 

    cuisine: "Indian", 

    location: "Downtown", 

    reviews: [ 

      { user: "Aarav", rating: 5, comment: "Amazing biryani!" }, 

      { user: "Bhavana", rating: 4, comment: "Great place!" } 

    ], 

    contact: { phone: "1234567890", email: "contact@biryanihouse.com" } 

  }, 

  { 

    name: "Curry Palace", 

    cuisine: "Indian", 

    location: "Downtown", 

    reviews: [ 

      { user: "Gaurav", rating: 4, comment: "Spicy and tasty!" }, 

      { user: "Harini", rating: 5, comment: "Best curry in town!" } 

    ], 

    contact: { phone: "0987654321", email: "contact@currypalace.com" } 

  }, 

  { 

    name: "Taco Stand", 

    cuisine: "Mexican", 

    location: "Downtown", 
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    reviews: [ 

      { user: "Ishaan", rating: 5, comment: "Fantastic tacos!" }, 

      { user: "Jaya", rating: 4, comment: "Very authentic" } 

    ], 

    contact: { phone: "1122334455", email: "contact@tacostand.com" } 

  } 

]) 

 

// Create a unique index on the contact.email field 

db.restaurants.createIndex({ "contact.email": 1 }, { unique: true }) 

 

// Create a sparse index on the location field 

db.restaurants.createIndex({ location: 1 }, { sparse: true }) 

 

// Create a compound index on the name and location fields 

db.restaurants.createIndex({ name: 1, location: 1 }) 

 

// Create a multikey index on the reviews field 

db.restaurants.createIndex({ reviews: 1 }) 

 

// Verify the created indexes 

db.restaurants.getIndexes() 
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Program 9: a. Develop  a query to demonstrate Text search using catalog data collection 

for a given word 

 

Create a text index on the fields you want to search 

{ 

  "_id": 1, 

  "title": "Wireless Bluetooth Headphones", 

  "description": "High-quality sound with noise cancellation" 

} 

 

db.catalog.createIndex({ title: "text", description: "text" }) 

 

Perform a text search query for a given word 

db.catalog.find( 

  { $text: { $search: "Bluetooth" } }, 

  { score: { $meta: "textScore" } }  // To get relevance score 

).sort({ score: { $meta: "textScore" } }) 

 

b. Develop  queries to illustrate excluding documents with certain words and phrases 

MongoDB Text Search (Exclude documents containing a word) 

db.collection.find({ 

  $text: { $search: "some keyword" }, 

  "field": { $not: /excludedWord/i } 

}) 

 

db.collection.find({ 

  $text: { $search: "some keyword" }, 

  "field": { $not: /apple/i } 

}) 
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Elasticsearch Query DSL 

 

{ 

  "query": { 

    "bool": { 

      "must": { 

        "match": { "content": "searchTerm" } 

      }, 

      "must_not": { 

        "match": { "content": "excludedWord" } 

      } 

    } 

  } 

} 

 

MongoDB Aggregation with Text Search Excluding 

If you want to exclude documents containing "spam" in the text indexed  

 

db.collection.aggregate([ 

  { 

    $match: { 

      $text: { $search: "yourSearchTerm" } 

    } 

  }, 

  { 

    $match: { 

      "content": { $not: /spam/i } 

    } 

  } ]) 
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Experiment 10: Develop an aggregation pipeline to illustrate Text search on Catalog 

data collection. 

Aggregation Pipeline for Text Search on catalog Collection: 

db.catalog.aggregate([ 

  { 

    $match: { 

      $text: { $search: "your search keywords" } 

    } 

  }, 

  { 

    $addFields: { 

      score: { $meta: "textScore" } 

    } 

  }, 

  { 

    $sort: { score: -1 } 

  }, 

  { 

    $project: { 

      title: 1, 

      description: 1, 

      price: 1, 

      score: 1 

    } 

  } 

]) 

 

db.catalog.aggregate([ 

  { 

    $match: { 

      $text: { $search: "wireless headphones" } 
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    } 

  }, 

  { 

    $addFields: { 

      score: { $meta: "textScore" } 

    } 

  }, 

  { 

    $sort: { score: -1 } 

  }, 

  { 

    $project: { 

      title: 1, 

      description: 1, 

      price: 1, 

      score: 1 

    } 

  } 

]) 
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Experiment 10:  

 

 


