

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI – 590 009.

(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
Accredited by NAAC)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Campus :Savagaon Road, Belagavi – 590 009. : 0831 – 2438100, 2438123, Fax: 0831-2438197

Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

MongoDB

 LAB MANUAL

IV Semester AI&DS

Designed By,

1. Prof. Vaibhav Chavan

2. Prof. Sagar Birje

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI – 590 009.

(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
Accredited by NAAC)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Campus :Savagaon Road, Belagavi – 590 009. : 0831 – 2438100, 2438123, Fax: 0831-2438197

Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

Institute Vision

To become premier institute committed to academic excellence and global competence for the

holistic development of students.

Key words: academic excellence, global competence, holistic development.

Institute Mission

M1: Develop competent human resources, adopt outcome based education (OBE) and implement

cognitive assessment of students.

M2: Inculcate the traits of global competencies amongst the students.

M3: Nurture and train our students to have domain knowledge, develop the qualities of global

professionals and to have social consciousness for holistic development.

Department Vision

To deliver a quality and responsive education in the field of artificial intelligence and data science

emphasizing professional skills to face global challenges in the evolving IT paradigm.

Key words: quality and responsive, professional skills, global challenges.

Department Mission

M1: Leverage multiple pedagogical approaches to impart knowledge on the current and emerging AI

technologies.

M2: Develop an inclusive and holistic ambiance that bolsters problem solving, cognitive abilities and

critical thinking.

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI – 590 009.

(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
Accredited by NAAC)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Campus :Savagaon Road, Belagavi – 590 009. : 0831 – 2438100, 2438123, Fax: 0831-2438197

Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

M3: Enable students to develop trust worthiness, team spirit, understanding law-of-the-land, social

behavior to be a global stake holder.

Program Specific Outcomes (PSOs):

PSO1: To apply core knowledge of Artificial Intelligence, Machine Learning, Deep Learning, Data

Science, Big Data Analytics and Statistical Learning to develop effective solutions for real-world

problems.

PSO2: To demonstrate proficiency in specialized and emerging technologies such as Natural

Language Processing, Cloud Computing, Robotic Process Automation, Storage Area Networks and the

Internet of Things to meet the stringent and diverse professional challenges.

PSO3: To imbibe managerial skills, social responsibility, ethical and moral values through courses in

Management and Entrepreneurship, Software Engineering Principles, Universal Human Values and

Ability Enhancement Programs to meet the industry and societal expectations.

Program Educational Objectives (PEOs)

PEO 1: Build a strong foundation in mathematics, core programming, artificial intelligence, machine

learning, and data science to enable graduates to analyze, design, and implement intelligent systems

for solving complex real-world problems.

PEO 2: Foster creativity, cognitive and research skills to analyze the requirements and technical

specifications of software to articulate novel engineering solutions for an efficient product design.

PEO 3: Prepare graduates for dynamic career opportunities in AI and Data Science by equipping them

with interdisciplinary knowledge, adaptability, and practical exposure to tools and techniques required

for industry and research.

PEO 4: Instill a strong sense of ethics, professional responsibility, and human values, empowering

graduates to contribute positively to society and lead with integrity in their professional domains.

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI – 590 009.

(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
Accredited by NAAC)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Campus :Savagaon Road, Belagavi – 590 009. : 0831 – 2438100, 2438123, Fax: 0831-2438197

Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

PEO 5: Encourage graduates to pursue higher education, certification program, entrepreneurial

ventures, etc. by nurturing a mindset of continuous learning and awareness of global trends and

challenges.

INDEX
Sl.No Experiment Page No

1 a. Illustration of Where Clause, AND,OR operations in MongoDB. b.

Execute the Commands of MongoDB and operations in MongoDB :

Insert, Query, Update, Delete and Projection. (Note: use any collection)

1

2 a. Develop a MongoDB query to select certain fields and ignore some

fields of the documents from any collection. b. Develop a MongoDB

query to display the first 5 documents from the results obtained in a.

[use of limit and find]

12

3 a. Execute query selectors (comparison selectors, logical selectors) and

list out the results on any collection b. Execute query selectors

(Geospatial selectors, Bitwise selectors) and list out the results on any

collection

15

4 Create and demonstrate how projection operators ($, $elematch and

$slice) would be used in the MondoDB.

28

5 Execute Aggregation operations ($avg, $min,$max, $push, $addToSet

etc.). students encourage to execute several queries to demonstrate

various aggregation operators)

31

6 Execute Aggregation Pipeline and its operations (pipeline must contain

$match, $group, $sort, $project, $skip etc. students encourage to execute

several queries to demonstrate various aggregation operators)

36

7 a. Find all listings with listing_url, name, address, host_picture_url in

the listings And Reviews collection that have a host with a picture url b.

Using E-commerce collection write a query to display reviews

summary.

39

8 a. Demonstrate creation of different types of indexes on collection

(unique, sparse, compound and multikey indexes) b. Demonstrate

optimization of queries using indexes.

45

9 a. Develop a query to demonstrate Text search using catalog data

collection for a given word b. Develop queries to illustrate excluding

documents with certain words and phrases

47

10 Develop an aggregation pipeline to illustrate Text search on Catalog

data collection.

49

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 1

Experiment 1: 1a. Illustration of Where Clause, AND,OR operations in MongoDB.

//To create the new database as well as switch the database if not existing

use ProgrammingBooks

//To create the collection inside the database

db.createCollection("BookDetails")

//To insert the single value or document

db.BookDetails.insertOne({

 _id: 1,

 title: "Clean Code",

 author: "Robert C. Martin",

 category: "Software Development",

 year: 2008

})

//To insert the multiple values or documents

db.BookDetails.insertMany([

{_id: 1, title: "Clean Code", author: "Robert C. Martin", category: "Software Development",

year: 2008 },

{_id: 2, title: "JavaScript: The Good Parts", author: "Douglas Crockford", category:

"JavaScript", year: 2008 },

{_id: 3, title: "Design Patterns", author: "Erich Gamma", category: "Software Design", year:

1994 },

{_id: 4, title: "Introduction to Algorithms", author: "Thomas H. Cormen", category:

"Algorithms", year: 2009 },

{_id: 5, title: "Python Crash Course", author: "Eric Matthes", category: "Python", year: 2015

}

]);

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 2

//Condition statement for where operator

db.BookDetails.find({ year: 2008 }).pretty()

OUTPUT

[

 {

 _id: 1,

 title: 'Clean Code',

 author: 'Robert C. Martin',

 category: 'Software Development',

 year: 2008

 },

 {

 _id: 2,

 title: 'JavaScript: The Good Parts',

 author: 'Douglas Crockford',

 category: 'JavaScript',

 year: 2008

 }

]

//Condition statement for $and operator

db.BookDetails.find({

$and: [

 { category: "Software Development" },

 { year: 2008 }

]

 }).pretty()

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 3

OUTPUT

[

 {

 _id: 1,

 title: 'Clean Code',

 author: 'Robert C. Martin',

 category: 'Software Development',

 year: 2008

 }

]

Using the $or Operator:

////Condition statement for $or operator

db.BookDetails.find({

$or: [

 { category: "JavaScript" },

 { year: 2015 }

]

 }).pretty()

OUTPUT

[

 {

 _id: 2,

 title: 'JavaScript: The Good Parts',

 author: 'Douglas Crockford',

 category: 'JavaScript',

 year: 2008

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 4

 },

 {

 _id: 5,

 title: 'Python Crash Course',

 author: 'Eric Matthes',

 category: 'Python',

 year: 2015

 }

]

1b. Execute the Commands of MongoDB and operations in MongoDB : Insert, Query,

Update, Delete and Projection. (Note: use any collection)

//To create the new database as well as switch the database if not existing

use Books

//To create the collection inside the database

db.createCollection("BookDetails")

//To insert the single value or document

db.BookDetails.insertOne({

 _id: 1,

 title: "The Pragmatic Programmer: Your Journey to Mastery",

 author: "David Thomas, Andrew Hunt",

 category: "Software Development",

 year: 1999

})

//To insert the multiple values or documents

db.BookDetails.insertMany([

 {

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 5

 _id: 1,

 title: "Clean Code: A Handbook of Agile Software Craftsmanship",

 author: "Robert C. Martin",

 category: "Software Development",

 year: 2008

 },

 {

 _id: 2,

 title: "JavaScript: The Good Parts",

 author: "Douglas Crockford",

 category: "JavaScript",

 year: 2008

 },

 {

 _id: 3,

 title: "Design Patterns: Elements of Reusable Object-Oriented Software",

 author: "Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides",

 category: "Software Design",

 year: 1994

 },

 {

 _id: 4,

 title: "Introduction to Algorithms",

 author: "Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein",

 category: "Algorithms",

 year: 1990

 },

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 6

 {

 _id: 5,

 title: "Python Crash Course: A Hands-On, Project-Based Introduction to Programming",

 author: "Eric Matthes",

 category: "Python",

 year: 2015

 }

])

1. Find All Documents command…

db.BookDetails.find().pretty()

[

 {

 _id: 1,

 title: 'Clean Code: A Handbook of Agile Software Craftsmanship',

 author: 'Robert C. Martin',

 category: 'Software Development',

 year: 2008

 },

 {

 _id: 2,

 title: 'JavaScript: The Good Parts',

 author: 'Douglas Crockford',

 category: 'JavaScript',

 year: 2008

 },

 {

 _id: 3,

 title: 'Design Patterns: Elements of Reusable Object-Oriented Software',

 author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides',

 category: 'Software Design',

 year: 1994

 },

 {

 _id: 4,

 title: 'Introduction to Algorithms',

 author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford

Stein',

 category: 'Algorithms',

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 7

 year: 1990

 },

 {

 _id: 5,

 title: 'Python Crash Course: A Hands-On, Project-Based Introduction to

Programming',

 author: 'Eric Matthes',

 category: 'Python',

 year: 2015

 }

]

2. Find Documents Matching a Condition:

db.BookDetails.find({ year: { $gt: 2000 } }).pretty()

[

 {

 _id: 1,

 title: 'Clean Code: A Handbook of Agile Software Craftsmanship',

 author: 'Robert C. Martin',

 category: 'Software Development',

 year: 2008

 },

 {

 _id: 2,

 title: 'JavaScript: The Good Parts',

 author: 'Douglas Crockford',

 category: 'JavaScript',

 year: 2008

 },

 {

 _id: 5,

 title: 'Python Crash Course: A Hands-On, Project-Based Introduction to

Programming',

 author: 'Eric Matthes',

 category: 'Python',

 year: 2015

 }

]

Update Operations:

//To insert the single value or document

db.BookDetails.updateOne(

 { title: "Clean Code: A Handbook of Agile Software Craftsmanship" },

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 8

 { $set: { author: "vtucode" } }

)

//To see the updated result

db.BookDetails.find({ year: { $eq: 2008 } }).pretty()

[

 {

 _id: 1,

 title: 'Clean Code: A Handbook of Agile Software Craftsmanship',

 author: 'vtucode',

 category: 'Software Development',

 year: 2008

 },

 {

 _id: 2,

 title: 'JavaScript: The Good Parts',

 author: 'Douglas Crockford',

 category: 'JavaScript',

 year: 2008

 }

]

//To insert the multiple values or documents

db.BookDetails.updateMany(

 { year: { $lt: 2010 } },

 { $set: { category: "vtucode website" } }

)

//To see the updated result

db.BookDetails.find({ year: { $lt: 2010 } }).pretty()

[

 {

 _id: 1,

 title: 'Clean Code: A Handbook of Agile Software Craftsmanship',

 author: 'vtucode',

 category: 'vtucode website',

 year: 2008

 },

 {

 _id: 2,

 title: 'JavaScript: The Good Parts',

 author: 'Douglas Crockford',

 category: 'vtucode website',

 year: 2008

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 9

 },

 {

 _id: 3,

 title: 'Design Patterns: Elements of Reusable Object-Oriented Software',

 author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides',

 category: 'vtucode website',

 year: 1994

 },

 {

 _id: 4,

 title: 'Introduction to Algorithms',

 author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford

Stein',

 category: 'vtucode website',

 year: 1990

 }

]

Delete Operations:

//To delete the single value or document

db.BookDetails.deleteOne({ _id: 2 })

//To verify the deleted document

db.BookDetails.find({ _id: 2 }).pretty()

//To delete the multiple values or documents

db.BookDetails.deleteMany({ year: { $lt: 1995 } })

//To verify the deleted document

db.BookDetails.find().pretty()

[

 {

 _id: 1,

 title: 'Clean Code: A Handbook of Agile Software Craftsmanship',

 author: 'vtucode',

 category: 'vtucode website',

 year: 2008

 },

 {

 _id: 5,

 title: 'Python Crash Course: A Hands-On, Project-Based Introduction to

Programming',

 author: 'Eric Matthes',

 category: 'Python',

 year: 2015

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 10

 }

]

//To delete the all values or document

db.BookDetails.deleteMany({ })

//To verify the deleted document

db.BookDetails.find().pretty()

Projection Operations:

//To retrieve specific include field values or document

db.ProgrammingBooks.find({}, { title: 1, author: 1 })

[

 {

 _id: 1,

 title: 'Clean Code: A Handbook of Agile Software Craftsmanship',

 author: 'Robert C. Martin'

 },

 {

 _id: 2,

 title: 'JavaScript: The Good Parts',

 author: 'Douglas Crockford'

 },

 {

 _id: 3,

 title: 'Design Patterns: Elements of Reusable Object-Oriented Software',

 author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides'

 },

 {

 _id: 4,

 title: 'Introduction to Algorithms',

 author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein'

 },

 {

 _id: 5,

 title: 'Python Crash Course: A Hands-On, Project-Based Introduction to

Programming',

 author: 'Eric Matthes'

 }

]

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 11

//To retrieve specific exclude field values or document

db.BookDetails.find({}, { year:0 })

[

 {

 _id: 1,

 title: 'Clean Code: A Handbook of Agile Software Craftsmanship',

 author: 'Robert C. Martin',

 category: 'Software Development'

 },

 {

 _id: 2,

 title: 'JavaScript: The Good Parts',

 author: 'Douglas Crockford',

 category: 'JavaScript'

 },

 {

 _id: 3,

 title: 'Design Patterns: Elements of Reusable Object-Oriented Software',

 author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides',

 category: 'Software Design'

 },

 {

 _id: 4,

 title: 'Introduction to Algorithms',

 author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford

Stein',

 category: 'Algorithms'

 },

 {

 _id: 5,

 title: 'Python Crash Course: A Hands-On, Project-Based Introduction to

Programming',

 author: 'Eric Matthes',

 category: 'Python'

 }

]

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 12

Experiment 2: 2a. Develop a MongoDB query to select certain fields and ignore some

fields of the documents from any collection.

//To create the new database as well as switch the database if not existing

use Movies

//To create the collection inside the database

db.createCollection("MovieDetails")

//To insert the multiple values or documents

db.MovieDetails.insertMany([

 { _id: 1, title: "Inception", director: "Christopher Nolan", genre: "Science Fiction", year:

2010, ratings: { imdb: 8.8, rottenTomatoes: 87 } },

 { _id: 2, title: "The Matrix", director: "Wachowskis", genre: "Science Fiction", year: 1999,

ratings: { imdb: 8.7, rottenTomatoes: 87 } },

 { _id: 3, title: "The Godfather", director: "Francis Ford Coppola", genre: "Crime", year:

1972, ratings: { imdb: 9.2, rottenTomatoes: 97 } }

]);

Using projection to perform the query:

1. Including Specific Fields:

//To retrieve specific include field values or document

db.MovieDetails.find({}, { title: 1, director: 1 })

[

 { _id: 1, title: 'Inception', director: 'Christopher Nolan' },

 { _id: 2, title: 'The Matrix', director: 'Wachowskis' },

 { _id: 3, title: 'The Godfather', director: 'Francis Ford Coppola' }

]

3

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 13

2. Excluding Specific Fields:

//To retrieve specific exclude field values or document

db.MovieDetails.find({}, { ratings: 0 })

[

 {

 _id: 1,

 title: 'Inception',

 director: 'Christopher Nolan',

 genre: 'Science Fiction',

 year: 2010

 },

 {

 _id: 2,

 title: 'The Matrix',

 director: 'Wachowskis',

 genre: 'Science Fiction',

 year: 1999

 },

 {

 _id: 3,

 title: 'The Godfather',

 director: 'Francis Ford Coppola',

 genre: 'Crime',

 year: 1972

 }

]

// Combine query filter with a projection...

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 14

db.MovieDetails.find({ director: "Christopher Nolan" }, { title: 1, year: 1, _id: 0 })

[{ title: 'Inception', year: 2010 }]

2b. Develop a MongoDB query to display the first 5 documents from the results obtained

in a. [use of limit and find] Using Above same Database

db.MovieDetails.insertMany([

 {_id: 4, title: "Pulp Fiction", director: "Quentin Tarantino", genre: "Crime", year: 1994,

ratings: { imdb: 8.9, rottenTomatoes: 92 } },

 {_id: 5, title: "The Shawshank Redemption", director: "Frank Darabont", genre:

"Drama", year: 1994, ratings: { imdb: 9.3, rottenTomatoes: 91 } },

 {_id: 6, title: "The Dark Knight", director: "Christopher Nolan", genre: "Action", year:

2008, ratings: { imdb: 9.0, rottenTomatoes: 94 } },

 {_id: 7, title: "Fight Club", director: "David Fincher", genre: "Drama", year: 1999,

ratings: { imdb: 8.8, rottenTomatoes: 79 } }

]);

//Query with Projection and Limit command...

db.MovieDetails.find({}, { title: 1, director: 1, year: 1, _id: 0 }).limit(5)

[

 { title: 'Inception', director: 'Christopher Nolan', year: 2010 },

 { title: 'The Matrix', director: 'Wachowskis', year: 1999 },

 { title: 'The Godfather', director: 'Francis Ford Coppola', year: 1972 },

 { title: 'Pulp Fiction', director: 'Quentin Tarantino', year: 1994 },

 { title: 'The Shawshank Redemption', director: 'Frank Darabont', year: 1994 }

]

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 15

Experiment 3: 3a. Execute query selectors (comparison selectors, logical selectors) and

list out the results on any collection.

//To create the new database as well as switch the database if not existing

use companyDB

//To insert the multiple values or documents

db.Employees.insertMany([

 { name: "Alice", age: 30, department: "HR", salary: 50000, joinDate: new Date("2015-01-

15") },

 { name: "Bob", age: 24, department: "Engineering", salary: 70000, joinDate: new

Date("2019-03-10") },

 { name: "Charlie", age: 29, department: "Engineering", salary: 75000, joinDate: new

Date("2017-06-23") },

 { name: "David", age: 35, department: "Marketing", salary: 60000, joinDate: new

Date("2014-11-01") },

 { name: "Eve", age: 28, department: "Finance", salary: 80000, joinDate: new Date("2018-

08-19") }

])

1. $eq (Equal): Find employees in the “Engineering” department.

db.Employees.find({ department: { $eq: "Engineering" } }).pretty()

[

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf7'),

 name: 'Bob',

 age: 24,

 department: 'Engineering',

 salary: 70000,

 joinDate: ISODate('2019-03-10T00:00:00.000Z')

 },

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf8'),

 name: 'Charlie',

 age: 29,

 department: 'Engineering',

 salary: 75000,

 joinDate: ISODate('2017-06-23T00:00:00.000Z')

 }

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 16

]

2. $ne (Not Equal): Find employees who are not in the “HR” department.

db.Employees.find({ department: { $ne: "HR" } }).pretty()

[

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf7'),

 name: 'Bob',

 age: 24,

 department: 'Engineering',

 salary: 70000,

 joinDate: ISODate('2019-03-10T00:00:00.000Z')

 },

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf8'),

 name: 'Charlie',

 age: 29,

 department: 'Engineering',

 salary: 75000,

 joinDate: ISODate('2017-06-23T00:00:00.000Z')

 },

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf9'),

 name: 'David',

 age: 35,

 department: 'Marketing',

 salary: 60000,

 joinDate: ISODate('2014-11-01T00:00:00.000Z')

 },

 {

 _id: ObjectId('666c18217d3bfa1feacdcdfa'),

 name: 'Eve',

 age: 28,

 department: 'Finance',

 salary: 80000,

 joinDate: ISODate('2018-08-19T00:00:00.000Z')

 }

]

3. $gt (Greater Than): Find employees who are older than 30.

db.Employees.find({ age: { $gt: 30 } }).pretty()

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 17

[

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf9'),

 name: 'David',

 age: 35,

 department: 'Marketing',

 salary: 60000,

 joinDate: ISODate('2014-11-01T00:00:00.000Z')

 }

]

4.$lt (Less Than): Find employees with a salary less than 70000.

db.Employees.find({ salary: { $lt: 70000 } }).pretty()

[

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf6'),

 name: 'Alice',

 age: 30,

 department: 'HR',

 salary: 50000,

 joinDate: ISODate('2015-01-15T00:00:00.000Z')

 },

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf9'),

 name: 'David',

 age: 35,

 department: 'Marketing',

 salary: 60000,

 joinDate: ISODate('2014-11-01T00:00:00.000Z')

 }

]

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 18

5. $gte (Greater Than or Equal): Find employees who joined on or after January 1, 2018.

db.Employees.find({ joinDate: { $gte: new Date("2018-01-01") } }).pretty()

[

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf7'),

 name: 'Bob',

 age: 24,

 department: 'Engineering',

 salary: 70000,

 joinDate: ISODate('2019-03-10T00:00:00.000Z')

 },

 {

 _id: ObjectId('666c18217d3bfa1feacdcdfa'),

 name: 'Eve',

 age: 28,

 department: 'Finance',

 salary: 80000,

 joinDate: ISODate('2018-08-19T00:00:00.000Z')

 }

]

6. $lte (Less Than or Equal): Find employees who are 28 years old or younger.

db.Employees.find({ age: { $lte: 28 } }).pretty()

[

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf7'),

 name: 'Bob',

 age: 24,

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 19

 department: 'Engineering',

 salary: 70000,

 joinDate: ISODate('2019-03-10T00:00:00.000Z')

 },

 {

 _id: ObjectId('666c18217d3bfa1feacdcdfa'),

 name: 'Eve',

 age: 28,

 department: 'Finance',

 salary: 80000,

 joinDate: ISODate('2018-08-19T00:00:00.000Z')

 }

]

Queries Using Logical Selectors:

1. $and (Logical AND): Find employees who are in the “Engineering” department and

have a salary greater than 70000.

db.Employees.find({

 $and: [

 { department: "Engineering" },

 { salary: { $gt: 70000 } }

]

}).pretty()

[

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf8'),

 name: 'Charlie',

 age: 29,

 department: 'Engineering',

 salary: 75000,

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 20

 joinDate: ISODate('2017-06-23T00:00:00.000Z')

 }

]

2.$or (Logical OR): Find employees who are either in the “HR” department or have a salary

less than 60000.

db.Employees.find({

 $or: [

 { department: "HR" },

 { salary: { $lt: 60000 } }

]

}).pretty()

[

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf6'),

 name: 'Alice',

 age: 30,

 department: 'HR',

 salary: 50000,

 joinDate: ISODate('2015-01-15T00:00:00.000Z')

 }

]

3. $not (Logical NOT): Find employees who are not in the “Engineering” department.

db.Employees.find({

 department: {

 $not: { $eq: "Engineering" }

 }

}).pretty()

[

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf6'),

 name: 'Alice',

 age: 30,

 department: 'HR',

 salary: 50000,

 joinDate: ISODate('2015-01-15T00:00:00.000Z')

 },

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf9'),

 name: 'David',

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 21

 age: 35,

 department: 'Marketing',

 salary: 60000,

 joinDate: ISODate('2014-11-01T00:00:00.000Z')

 },

 {

 _id: ObjectId('666c18217d3bfa1feacdcdfa'),

 name: 'Eve',

 age: 28,

 department: 'Finance',

 salary: 80000,

 joinDate: ISODate('2018-08-19T00:00:00.000Z')

 }

]

3. $nor (Logical NOR): Find employees who are neither in the “HR” department nor

have a salary greater than 75000.

 db.Employees.find({

 $nor: [

 { department: "HR" },

 { salary: { $gt: 75000 } }

]

}).pretty()

[

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf7'),

 name: 'Bob',

 age: 24,

 department: 'Engineering',

 salary: 70000,

 joinDate: ISODate('2019-03-10T00:00:00.000Z')

 },

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf8'),

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 22

 name: 'Charlie',

 age: 29,

 department: 'Engineering',

 salary: 75000,

 joinDate: ISODate('2017-06-23T00:00:00.000Z')

 },

 {

 _id: ObjectId('666c18217d3bfa1feacdcdf9'),

 name: 'David',

 age: 35,

 department: 'Marketing',

 salary: 60000,

 joinDate: ISODate('2014-11-01T00:00:00.000Z')

 }

]

3b. Execute query selectors (Geospatial selectors, Bitwise selectors) and list out the

results on any collection.

Geospatial Selectors:

use geodatabase

db.Places.insertMany([

 { name: "Central Park", location: { type: "Point", coordinates: [-73.9654, 40.7829] } },

 { name: "Times Square", location: { type: "Point", coordinates: [-73.9851, 40.7580] } },

 { name: "Brooklyn Bridge", location: { type: "Point", coordinates: [-73.9969, 40.7061] } },

 { name: "Empire State Building", location: { type: "Point", coordinates: [-73.9857, 40.7488]

} },

 { name: "Statue of Liberty", location: { type: "Point", coordinates: [-74.0445, 40.6892] } }

])

// Create a geospatial index

db.Places.createIndex({ location: "2dsphere" })

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 23

Geospatial Queries:

1. $near (Find places near a certain point): Find places near a specific coordinate, for

example, near Times Square.

db.Places.find({

 location: {

 $near: {

 $geometry: {

 type: "Point",

 coordinates: [-73.9851, 40.7580]

 },

 $maxDistance: 5000 // distance in meters

 }

 }

}).pretty()

[

 {

 _id: ObjectId('666c25eb7d3bfa1feacdcdfc'),

 name: 'Times Square',

 location: { type: 'Point', coordinates: [-73.9851, 40.758] }

 },

 {

 _id: ObjectId('666c25eb7d3bfa1feacdcdfe'),

 name: 'Empire State Building',

 location: { type: 'Point', coordinates: [-73.9857, 40.7488] }

 },

 {

 _id: ObjectId('666c25eb7d3bfa1feacdcdfb'),

 name: 'Central Park',

 location: { type: 'Point', coordinates: [-73.9654, 40.7829] }

 }

]

2. $geoWithin (Find places within a specific area): Find places within a specific

polygon, for example, an area covering part of Manhattan.

db.Places.find({

 location: {

 $geoWithin: {

 $geometry: {

 type: "Polygon",

 coordinates: [

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 24

 [

 [-70.016, 35.715],

 [-74.014, 40.717],

 [-73.990, 40.730],

 [-73.990, 40.715],

 [-70.016, 35.715]

]

]

 }

 }

 }

}).pretty()

[

 {

 _id: ObjectId('666c25eb7d3bfa1feacdcdfd'),

 name: 'Brooklyn Bridge',

 location: { type: 'Point', coordinates: [-73.9969, 40.7061] }

 }

]

Bitwise Selectors:

use techDB

db.Devices.insertMany([

 { name: "Device A", status: 5 }, // Binary: 0101

 { name: "Device B", status: 3 }, // Binary: 0011

 { name: "Device C", status: 12 }, // Binary: 1100

 { name: "Device D", status: 10 }, // Binary: 1010

 { name: "Device E", status: 7 } // Binary: 0111

])

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 25

Execute Bitwise Queries:

1. $bitsAllSet (Find documents where all bits are set): Find devices where the binary status

has both the 1st and 3rd bits set (binary mask 0101, or decimal 5).

db.Devices.find({

 status: { $bitsAllSet: [0, 2] }

}).pretty()

[

 {

 _id: ObjectId('666c28847d3bfa1feacdce00'),

 name: 'Device A',

 status: 5

 },

 {

 _id: ObjectId('666c28847d3bfa1feacdce04'),

 name: 'Device E',

 status: 7

 }

]

2.$bitsAnySet (Find documents where any of the bits are set): Find devices where the binary

status has at least the 2nd bit set (binary mask 0010, or decimal 2).

db.Devices.find({

 status: { $bitsAnySet: [1] }

}).pretty()

[

 {

 _id: ObjectId('666c28847d3bfa1feacdce01'),

 name: 'Device B',

 status: 3

 },

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 26

 {

 _id: ObjectId('666c28847d3bfa1feacdce03'),

 name: 'Device D',

 status: 10

 },

 {

 _id: ObjectId('666c28847d3bfa1feacdce04'),

 name: 'Device E',

 status: 7

 }

]

3.$bitsAllClear (Find documents where all bits are clear): Find devices where the binary

status has both the 2nd and 4th bits clear (binary mask 1010, or decimal 10).

db.Devices.find({

 status: { $bitsAllClear: [1, 3] }

}).pretty()

[

 {

 _id: ObjectId('666c28847d3bfa1feacdce00'),

 name: 'Device A',

 status: 5

 }

]

4. $bitsAnyClear (Find documents where any of the bits are clear): Find devices where the

binary status has at least the 1st bit clear (binary mask 0001, or decimal 1).

db.Devices.find({

 status: { $bitsAnyClear: [0] }

}).pretty()

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 27

[

 {

 _id: ObjectId('666c28847d3bfa1feacdce02'),

 name: 'Device C',

 status: 12

 },

 {

 _id: ObjectId('666c28847d3bfa1feacdce03'),

 name: 'Device D',

 status: 10

 }

]

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 28

Experiment 4: Create and demonstrate how projection operators ($, $elematch and

$slice) would be used in the MongoDB.

use retailDB

db.Products.insertMany([

 {

 name: "Laptop",

 brand: "BrandA",

 features: [

 { name: "Processor", value: "Intel i7" },

 { name: "RAM", value: "16GB" },

 { name: "Storage", value: "512GB SSD" }

],

 reviews: [

 { user: "Alice", rating: 5, comment: "Excellent!" },

 { user: "Bob", rating: 4, comment: "Very good" },

 { user: "Charlie", rating: 3, comment: "Average" }

]

 },

 {

 name: "Smartphone",

 brand: "BrandB",

 features: [

 { name: "Processor", value: "Snapdragon 888" },

 { name: "RAM", value: "8GB" },

 { name: "Storage", value: "256GB" }

],

 reviews: [

 { user: "Dave", rating: 4, comment: "Good phone" },

 { user: "Eve", rating: 2, comment: "Not satisfied" }

]

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 29

 }

])

Use Projection Operators:

1. $ Projection Operator: Find the product named “Laptop” and project the review from the

user “Alice”.

db.Products.find(

 { name: "Laptop", "reviews.user": "Alice" },

 { "reviews.$": 1 }

).pretty()

[

 {

 _id: ObjectId('666c2f237d3bfa1feacdce05'),

 reviews: [{ user: 'Alice', rating: 5, comment: 'Excellent!' }]

 }

]

2.$elemMatch Projection Operator: Find the product named “Laptop” and project the review

where the rating is greater than 4.

db.Products.find(

 { name: "Laptop" },

 { reviews: { $elemMatch: { rating: { $gt: 4 } } } }

).pretty()

[

 {

 _id: ObjectId('666c2f237d3bfa1feacdce05'),

 reviews: [{ user: 'Alice', rating: 5, comment: 'Excellent!' }]

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 30

 }]

3. $slice Projection Operator: Find the product named “Smartphone” and project the first

review.

db.Products.find(

 { name: "Smartphone" },

 { reviews: { $slice: 1 } }

).pretty()

[

 {

 _id: ObjectId('666c2f237d3bfa1feacdce06'),

 name: 'Smartphone',

 brand: 'BrandB',

 features: [

 { name: 'Processor', value: 'Snapdragon 888' },

 { name: 'RAM', value: '8GB' },

 { name: 'Storage', value: '256GB' }

],

 reviews: [{ user: 'Dave', rating: 4, comment: 'Good phone' }]

 }

]

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 31

Experiment 5: Execute Aggregation operations ($avg, $min,$max, $push, $addToSet

etc.). students encourage to execute several queries to demonstrate various aggregation

operators)

use salesDB

db.Sales.insertMany([

 { date: new Date("2024-01-01"), product: "Laptop", price: 1200, quantity: 1, customer:

"Amar" },

 { date: new Date("2024-01-02"), product: "Laptop", price: 1200, quantity: 2, customer:

"Babu" },

 { date: new Date("2024-01-03"), product: "Mouse", price: 25, quantity: 5, customer:

"Chandra" },

 { date: new Date("2024-01-04"), product: "Keyboard", price: 45, quantity: 3, customer:

"Amar" },

 { date: new Date("2024-01-05"), product: "Monitor", price: 300, quantity: 1, customer:

"Babu" },

 { date: new Date("2024-01-06"), product: "Laptop", price: 1200, quantity: 1, customer:

"Deva" }

])

Execute Aggregation Operations:

1. $avg (Average): Calculate the average price of each product.

db.Sales.aggregate([

 {

 $group: {

 _id: "$product",

 averagePrice: { $avg: "$price" }

 }

 }

]).pretty()

[

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 32

 { _id: 'Laptop', averagePrice: 1200 },

 { _id: 'Keyboard', averagePrice: 45 },

 { _id: 'Mouse', averagePrice: 25 },

 { _id: 'Monitor', averagePrice: 300 }

]

2. $min (Minimum): Find the minimum price of each product.

db.Sales.aggregate([

 {

 $group: {

 _id: "$product",

 minPrice: { $min: "$price" }

 }

 }

]).pretty()

[

 { _id: 'Mouse', minPrice: 25 },

 { _id: 'Keyboard', minPrice: 45 },

 { _id: 'Monitor', minPrice: 300 },

 { _id: 'Laptop', minPrice: 1200 }

]

3.$max (Maximum): Find the maximum price of each product.

db.Sales.aggregate([

 {

 $group: {

 _id: "$product",

 maxPrice: { $max: "$price" }

 }

 }

]).pretty()

[

 { _id: 'Mouse', maxPrice: 25 },

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 33

 { _id: 'Keyboard', maxPrice: 45 },

 { _id: 'Monitor', maxPrice: 300 },

 { _id: 'Laptop', maxPrice: 1200 }

]

4. $push (Push Values to an Array): Group sales by customer and push each purchased

product into an array.

db.Sales.aggregate([

 {

 $group: {

 _id: "$customer",

 products: { $push: "$product" }

 }

 }

]).pretty()

[

 { _id: 'Babu', products: ['Laptop', 'Monitor'] },

 { _id: 'Amar', products: ['Laptop', 'Keyboard'] },

 { _id: 'Chandra', products: ['Mouse'] },

 { _id: 'Deva', products: ['Laptop'] }

]

5.$addToSet (Add Unique Values to an Array): Group sales by customer and add each unique

purchased product to an array.

db.Sales.aggregate([

 {

 $group: {

 _id: "$customer",

 uniqueProducts: { $addToSet: "$product" }

 }

 }

]).pretty()

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 34

[

 { _id: 'Amar', uniqueProducts: ['Keyboard', 'Laptop'] },

 { _id: 'Babu', uniqueProducts: ['Monitor', 'Laptop'] },

 { _id: 'Deva', uniqueProducts: ['Laptop'] },

 { _id: 'Chandra', uniqueProducts: ['Mouse'] }]

Combining Aggregation Operations:

1. Calculate the total quantity and total sales amount for each product, and list all customers

who purchased each product.

db.Sales.aggregate([

 {

 $group: {

 _id: "$product",

 totalQuantity: { $sum: "$quantity" },

 totalSales: { $sum: { $multiply: ["$price", "$quantity"] } },

 customers: { $addToSet: "$customer" }

 }

 }

]).pretty()

[

 {

 _id: 'Mouse',

 totalQuantity: 5,

 totalSales: 125,

 customers: ['Chandra']

 },

 {

 _id: 'Keyboard',

 totalQuantity: 3,

 totalSales: 135,

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 35

 customers: ['Amar']

 },

 {

 _id: 'Monitor',

 totalQuantity: 1,

 totalSales: 300,

 customers: ['Babu']

 },

 {

 _id: 'Laptop',

 totalQuantity: 4,

 totalSales: 4800,

 customers: ['Amar', 'Babu', 'Deva']

 }

]

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 36

Experiment 6: Execute Aggregation Pipeline and its operations (pipeline must contain

$match, $group, $sort, $project, $skip etc. students encourage to execute several queries

to demonstrate various aggregation operators)

use restaurantDB

db.restaurants.insertMany([

 {

 name: "Biryani House",

 cuisine: "Indian",

 location: "Jayanagar",

 reviews: [

 { user: "Aarav", rating: 5, comment: "Amazing biryani!" },

 { user: "Bhavana", rating: 4, comment: "Great place!" }

]

 },

 {

 name: "Burger Joint",

 cuisine: "American",

 location: "Koramangala",

 reviews: [

 { user: "Chirag", rating: 3, comment: "Average burger" },

 { user: "Devika", rating: 4, comment: "Good value" }

]

 },

 {

 name: "Pasta House",

 cuisine: "Italian",

 location: "Rajajinagar",

 reviews: [

 { user: "Esha", rating: 5, comment: "Delicious pasta!" },

 { user: "Farhan", rating: 4, comment: "Nice ambiance" }

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 37

]

 },

 {

 name: "Curry Palace",

 cuisine: "Indian",

 location: "Jayanagar",

 reviews: [

 { user: "Gaurav", rating: 4, comment: "Spicy and tasty!" },

 { user: "Harini", rating: 5, comment: "Best curry in town!" }

]

 },

 {

 name: "Taco Stand",

 cuisine: "Mexican",

 location: "Jayanagar",

 reviews: [

 { user: "Ishaan", rating: 5, comment: "Fantastic tacos!" },

 { user: "Jaya", rating: 4, comment: "Very authentic" }

]

 }

])

Aggregation Pipeline and its operations:

1. Execute Aggregation Pipeline and its operations (pipeline must contain match, group, sort,

project, $skip etc.)

db.restaurants.aggregate([

 {

 $match: {

 "location": "Jayanagar"

 }

 },

 {

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 38

 $unwind: "$reviews"

 },

 {

 $group: {

 _id: "$name",

 averageRating: { $avg: "$reviews.rating" },

 totalReviews: { $sum: 1 }

 }

 },

 {

 $sort: {

 averageRating: -1

 }

 },

 {

 $project: {

 _id: 0,

 restaurant: "$_id",

 averageRating: 1,

 totalReviews: 1

 }

 },

 {

 $skip: 1

 }

]).pretty()

[

 { averageRating: 4.5, totalReviews: 2, restaurant: 'Curry Palace' },

 { averageRating: 4.5, totalReviews: 2, restaurant: 'Taco Stand' }]

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 39

Experiment 7: 7a. a. Find all listings with listing_url, name, address, host_picture_url in

the listings And Reviews collection that have a host with a picture url.

use vacationRentals

db.listingsAndReviews.insertMany([

 {

 listing_url: "http://www.example.com/listing/123456",

 name: "Beautiful Apartment",

 address: {

 street: "123 Main Street",

 suburb: "Central",

 city: "Metropolis",

 country: "Wonderland"

 },

 host: {

 name: "Alice",

 picture_url: "http://www.example.com/images/host/host123.jpg"

 }

 },

 {

 listing_url: "http://www.example.com/listing/654321",

 name: "Cozy Cottage",

 address: {

 street: "456 Another St",

 suburb: "North",

 city: "Smallville",

 country: "Wonderland"

 },

 host: {

 name: "Bob",

 picture_url: ""

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 40

 }

 },

 {

 listing_url: "http://www.example.com/listing/789012",

 name: "Modern Condo",

 address: {

 street: "789 Side Road",

 suburb: "East",

 city: "Gotham",

 country: "Wonderland"

 },

 host: {

 name: "Charlie",

 picture_url: "http://www.example.com/images/host/host789.jpg"

 }

 }

])

Query to Find Listings with Host Picture URLs:

 Now that the collection is set up, you can run the query to find all listings

with listing_url, name, address, and host_picture_url where the host has a picture URL.

db.listingsAndReviews.find(

 {

 "host.picture_url": { $exists: true, $ne: "" }

 },

 {

 listing_url: 1,

 name: 1,

 address: 1,

 "host.picture_url": 1

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 41

 }

).pretty()

[

 {

 _id: ObjectId('666c40ce85a7615d27cdcdfb'),

 listing_url: 'http://www.example.com/listing/123456',

 name: 'Beautiful Apartment',

 address: {

 street: '123 Main Street',

 suburb: 'Central',

 city: 'Metropolis',

 country: 'Wonderland'

 },

 host: { picture_url: 'http://www.example.com/images/host/host123.jpg' }

 },

 {

 _id: ObjectId('666c40ce85a7615d27cdcdfd'),

 listing_url: 'http://www.example.com/listing/789012',

 name: 'Modern Condo',

 address: {

 street: '789 Side Road',

 suburb: 'East',

 city: 'Gotham',

 country: 'Wonderland'

 },

 host: { picture_url: 'http://www.example.com/images/host/host789.jpg' }

 }

]

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 42

7b. Using E-commerce collection write a query to display reviews summary.

use ecommerce

db.products.insertMany([

 {

 product_id: 1,

 name: "Laptop",

 category: "Electronics",

 price: 1200,

 reviews: [

 { user: "Alice", rating: 5, comment: "Excellent!" },

 { user: "Bob", rating: 4, comment: "Very good" },

 { user: "Charlie", rating: 3, comment: "Average" }

]

 },

 {

 product_id: 2,

 name: "Smartphone",

 category: "Electronics",

 price: 800,

 reviews: [

 { user: "Dave", rating: 4, comment: "Good phone" },

 { user: "Eve", rating: 2, comment: "Not satisfied" },

 { user: "Frank", rating: 5, comment: "Amazing!" }

]

 },

 {

 product_id: 3,

 name: "Headphones",

 category: "Accessories",

 price: 150,

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 43

 reviews: [

 { user: "Grace", rating: 5, comment: "Great sound" },

 { user: "Heidi", rating: 3, comment: "Okay" }

]

 }

])

To display a summary of reviews in an e-commerce collection, we can assume

the ecommerce database contains a products collection with documents structured to include

reviews. Each product document could have a reviews array with review details such as

rating, comment, and user.

db.products.aggregate([

 {

 $unwind: "$reviews"

 },

 {

 $group: {

 _id: "$name",

 totalReviews: { $sum: 1 },

 averageRating: { $avg: "$reviews.rating" },

 comments: { $push: "$reviews.comment" }

 }

 },

 {

 $project: {

 _id: 0,

 product: "$_id",

 totalReviews: 1,

 averageRating: 1,

 comments: 1

 } }]).pretty()

[

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 44

 {

 totalReviews: 3,

 averageRating: 4,

 comments: ['Excellent!', 'Very good', 'Average'],

 product: 'Laptop'

 },

 {

 totalReviews: 3,

 averageRating: 3.6666666666666665,

 comments: ['Good phone', 'Not satisfied', 'Amazing!'],

 product: 'Smartphone'

 },

 {

 totalReviews: 2,

 averageRating: 4,

 comments: ['Great sound', 'Okay'],

 product: 'Headphones'

 }

]

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 45

Experiment 8: a. Demonstrate creation of different types of indexes on collection (unique,

sparse, compound and multikey indexes)

// Switch to the restaurantDB database

use restaurantDB

// Insert sample documents into the restaurants collection

db.restaurants.insertMany([

 {

 name: "Biryani House",

 cuisine: "Indian",

 location: "Downtown",

 reviews: [

 { user: "Aarav", rating: 5, comment: "Amazing biryani!" },

 { user: "Bhavana", rating: 4, comment: "Great place!" }

],

 contact: { phone: "1234567890", email: "contact@biryanihouse.com" }

 },

 {

 name: "Curry Palace",

 cuisine: "Indian",

 location: "Downtown",

 reviews: [

 { user: "Gaurav", rating: 4, comment: "Spicy and tasty!" },

 { user: "Harini", rating: 5, comment: "Best curry in town!" }

],

 contact: { phone: "0987654321", email: "contact@currypalace.com" }

 },

 {

 name: "Taco Stand",

 cuisine: "Mexican",

 location: "Downtown",

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 46

 reviews: [

 { user: "Ishaan", rating: 5, comment: "Fantastic tacos!" },

 { user: "Jaya", rating: 4, comment: "Very authentic" }

],

 contact: { phone: "1122334455", email: "contact@tacostand.com" }

 }

])

// Create a unique index on the contact.email field

db.restaurants.createIndex({ "contact.email": 1 }, { unique: true })

// Create a sparse index on the location field

db.restaurants.createIndex({ location: 1 }, { sparse: true })

// Create a compound index on the name and location fields

db.restaurants.createIndex({ name: 1, location: 1 })

// Create a multikey index on the reviews field

db.restaurants.createIndex({ reviews: 1 })

// Verify the created indexes

db.restaurants.getIndexes()

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 47

Program 9: a. Develop a query to demonstrate Text search using catalog data collection

for a given word

Create a text index on the fields you want to search

{

 "_id": 1,

 "title": "Wireless Bluetooth Headphones",

 "description": "High-quality sound with noise cancellation"

}

db.catalog.createIndex({ title: "text", description: "text" })

Perform a text search query for a given word

db.catalog.find(

 { $text: { $search: "Bluetooth" } },

 { score: { $meta: "textScore" } } // To get relevance score

).sort({ score: { $meta: "textScore" } })

b. Develop queries to illustrate excluding documents with certain words and phrases

MongoDB Text Search (Exclude documents containing a word)

db.collection.find({

 $text: { $search: "some keyword" },

 "field": { $not: /excludedWord/i }

})

db.collection.find({

 $text: { $search: "some keyword" },

 "field": { $not: /apple/i }

})

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 48

Elasticsearch Query DSL

{

 "query": {

 "bool": {

 "must": {

 "match": { "content": "searchTerm" }

 },

 "must_not": {

 "match": { "content": "excludedWord" }

 }

 }

 }

}

MongoDB Aggregation with Text Search Excluding

If you want to exclude documents containing "spam" in the text indexed

db.collection.aggregate([

 {

 $match: {

 $text: { $search: "yourSearchTerm" }

 }

 },

 {

 $match: {

 "content": { $not: /spam/i }

 }

 }])

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 49

Experiment 10: Develop an aggregation pipeline to illustrate Text search on Catalog

data collection.

Aggregation Pipeline for Text Search on catalog Collection:

db.catalog.aggregate([

 {

 $match: {

 $text: { $search: "your search keywords" }

 }

 },

 {

 $addFields: {

 score: { $meta: "textScore" }

 }

 },

 {

 $sort: { score: -1 }

 },

 {

 $project: {

 title: 1,

 description: 1,

 price: 1,

 score: 1

 }

 }

])

db.catalog.aggregate([

 {

 $match: {

 $text: { $search: "wireless headphones" }

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 50

 }

 },

 {

 $addFields: {

 score: { $meta: "textScore" }

 }

 },

 {

 $sort: { score: -1 }

 },

 {

 $project: {

 title: 1,

 description: 1,

 price: 1,

 score: 1

 }

 }

])

 MongoDB Lab Manual BDS456B

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 51

Experiment 10:

