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Experiment 1: 1a. Illustration of Where Clause, AND,OR operations in MongoDB.

//To create the new database as well as switch the database if not existing

use ProgrammingBooks

//To create the collection inside the database

db.createCollection("BookDetails")

//To insert the single value or document
db.BookDetails.insertOne( {

_id: 1,

title: "Clean Code",

author: "Robert C. Martin",

category: "Software Development",

year: 2008
1)

//To insert the multiple values or documents
db.BookDetails.insertMany([

{ 1id: 1, title: "Clean Code", author: "Robert C. Martin", category: "Software Development",
year: 2008 },

{ 1id: 2, title: "JavaScript: The Good Parts", author: "Douglas Crockford", category:
"JavaScript", year: 2008 },

{ id: 3, title: "Design Patterns", author: "Erich Gamma", category: "Software Design", year:
1994 3},

{_id: 4, title: "Introduction to Algorithms", author: "Thomas H. Cormen", category:
"Algorithms", year: 2009 },

{ id: 5, title: "Python Crash Course", author: "Eric Matthes", category: "Python", year: 2015
}

s
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//Condition statement for where operator

db.BookDetails.find({ year: 2008 }).pretty()

OUTPUT

[
{
_id: 1,
title: 'Clean Code',
author: 'Robert C. Martin',
category: 'Software Development',
year: 2008
¥
{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'JavaScript',
year: 2008
§
]

//Condition statement for $and operator
db.BookDetails.find({
$and: [

{ category: "Software Development" },

{ year: 2008 }

]
})-pretty()

Dept. of Artificail intelligence & Data Science, AITM, Belagavi
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OUTPUT

[
{
_id: 1,
title: 'Clean Code',
author: 'Robert C. Martin',
category: 'Software Development',

year: 2008

}

]
Using the $or Operator:

////Condition statement for $or operator
db.BookDetails.find({
$or: [
{ category: "JavaScript" },
{ year: 2015 }
]
})-pretty()

OUTPUT

[
{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'JavaScript',
year: 2008

Dept. of Artificail intelligence & Data Science, AITM, Belagavi
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_id: 5,

title: 'Python Crash Course',
author: 'Eric Matthes',
category: 'Python',

year: 2015

1b. Execute the Commands of MongoDB and operations in MongoDB : Insert, Query,
Update, Delete and Projection. (Note: use any collection)

//To create the new database as well as switch the database if not existing

use Books

//To create the collection inside the database

db.createCollection("BookDetails")

//To insert the single value or document
db.BookDetails.insertOne( {
_id: 1,
title: "The Pragmatic Programmer: Your Journey to Mastery",
author: "David Thomas, Andrew Hunt",
category: "Software Development",

year: 1999
1)

//To insert the multiple values or documents

db.BookDetails.insertMany([
{
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_id: 1,
title: "Clean Code: A Handbook of Agile Software Craftsmanship",
author: "Robert C. Martin",

category: "Software Development",

year: 2008
}s

{

_id: 2,

title: "JavaScript: The Good Parts",
author: "Douglas Crockford",
category: "JavaScript",

year: 2008

1

{

_id: 3,

title: "Design Patterns: Elements of Reusable Object-Oriented Software",
author: "Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides",
category: "Software Design",

year: 1994
¥

{
_id: 4,
title: "Introduction to Algorithms",
author: "Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein",
category: "Algorithms",
year: 1990
s
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_id: 5,

title: "Python Crash Course: A Hands-On, Project-Based Introduction to Programming",
author: "Eric Matthes",

category: "Python",

year: 2015

D

1. Find All Documents command...
db.BookDetails.find().pretty()

[
{
_id: 1,
title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'Robert C. Martin',
category: 'Software Development',
year: 2008
¥
{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'JavaScript',
year: 2008
¥
{
_1d: 3,
title: 'Design Patterns: Elements of Reusable Object-Oriented Software',
author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides',
category: 'Software Design',
year: 1994
s
{
_id: 4,
title: 'Introduction to Algorithms',
author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein',
category: 'Algorithms’,
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year: 1990

}s
{
_id: 5,
title: 'Python Crash Course: A Hands-On, Project-Based Introduction to
Programming',
author: 'Eric Matthes',
category: 'Python',
year: 2015
}
]

2. Find Documents Matching a Condition:

db.BookDetails.find({ year: { $gt: 2000 } }).pretty()

[
{
_id: 1,
title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'Robert C. Martin',
category: 'Software Development',
year: 2008
i
{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'JavaScript',
year: 2008
s
{
_1d: 5,
title: 'Python Crash Course: A Hands-On, Project-Based Introduction to
Programming',
author: 'Eric Matthes',
category: 'Python',
year: 2015
}
]

Update Operations:
//To insert the single value or document
db.BookDetails.updateOne(
{ title: "Clean Code: A Handbook of Agile Software Craftsmanship" },
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{ $set: { author: "vtucode" } }

)

//To see the updated result
db.BookDetails.find({ year: { $eq: 2008 } }).pretty()

[
{
_id: 1,
title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'vtucode',
category: 'Software Development',
year: 2008

55

{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'JavaScript',
year: 2008

}

]

//To insert the multiple values or documents
db.BookDetails.updateMany(

{ year: { $1t: 2010 } },

{ $set: { category: "vtucode website" } }

)

//To see the updated result
db.BookDetails.find({ year: { $it: 2010 } }).pretty()

[

{
_id: 1,
title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'vtucode',
category: 'vtucode website',
year: 2008

s

{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'vtucode website',

year: 2008
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s
{
_id: 3,
title: 'Design Patterns: Elements of Reusable Object-Oriented Software',
author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides',
category: 'vtucode website',
year: 1994
}s
{
_id: 4,
title: 'Introduction to Algorithms',
author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein',
category: 'vtucode website',
year: 1990

}
]

Delete Operations:
//To delete the single value or document
db.BookDetails.deleteOne({ id: 2 })

//To verify the deleted document
db.BookDetails.find({ id: 2 }).pretty()

//To delete the multiple values or documents
db.BookDetails.deleteMany({ year: { $lt: 1995 } })

//To verify the deleted document
db.BookDetails.find().pretty()

[
{
_id: 1,
title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'vtucode',
category: 'vtucode website',
year: 2008
5
{
_id: 5,
title: 'Python Crash Course: A Hands-On, Project-Based Introduction to
Programming',
author: 'Eric Matthes',
category: 'Python’,
year: 2015
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]

}

//To delete the all values or document
db.BookDetails.deleteMany({ })

//To verify the deleted document
db.BookDetails.find().pretty()

Projection Operations:

//To retrieve specific include field values or document
db.ProgrammingBooks.find({}, { title: 1, author: 1 })

[

{

_id: 1,

title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'Robert C. Martin'

1

{
_id: 2,
title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford'

i

{
_1d: 3,
title: 'Design Patterns: Elements of Reusable Object-Oriented Software',
author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides'

1

{
_1d: 4,
title: 'Introduction to Algorithms',
author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein'

5

{
_id: 5,
title: 'Python Crash Course: A Hands-On, Project-Based Introduction to

Programming',

]

author: 'Eric Matthes'

}

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 10



MongoDB Lab Manual BDS456B

//To retrieve specific exclude field values or document
db.BookDetails.find({}, { year:0 } )

[
{
_id: 1,
title: 'Clean Code: A Handbook of Agile Software Craftsmanship',
author: 'Robert C. Martin',
category: 'Software Development'

1

{

_id: 2,

title: 'JavaScript: The Good Parts',
author: 'Douglas Crockford',
category: 'JavaScript'

1

{
_id: 3,
title: 'Design Patterns: Elements of Reusable Object-Oriented Software',
author: 'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides',
category: 'Software Design'

1

{
_1d: 4,
title: 'Introduction to Algorithms',
author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein’,
category: 'Algorithms'
}s

{
_1d: 5,
title: 'Python Crash Course: A Hands-On, Project-Based Introduction to
Programming',
author: 'Eric Matthes',
category: 'Python’
}
]
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Experiment 2: 2a. Develop a MongoDB query to select certain fields and ignore some
fields of the documents from any collection.

//To create the new database as well as switch the database if not existing

use Movies

//To create the collection inside the database

db.createCollection("MovieDetails")

//To insert the multiple values or documents
db.MovieDetails.insertMany([

{ 1id: 1, title: "Inception", director: "Christopher Nolan", genre: "Science Fiction", year:
2010, ratings: { imdb: 8.8, rottenTomatoes: 87 } },

{ id: 2, title: "The Matrix", director: "Wachowskis", genre: "Science Fiction", year: 1999,
ratings: { imdb: 8.7, rottenTomatoes: 87 } },

{ id: 3, title: "The Godfather", director: "Francis Ford Coppola", genre: "Crime", year:
1972, ratings: { imdb: 9.2, rottenTomatoes: 97 } }

Ds

Using projection to perform the query:

1. Including Specific Fields:

//To retrieve specific include field values or document

db.MovieDetails.find({}, { title: 1, director: 1 })

[
{ id: 1, title: 'Inception', director: 'Christopher Nolan' },

{ id: 2, title: 'The Matrix', director: "Wachowskis' },

{ _id: 3, title: 'The Godfather', director: 'Francis Ford Coppola' }

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 12
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2. Excluding Specific Fields:
//To retrieve specific exclude field values or document

db.MovieDetails.find({}, { ratings: 0 })

{
_id: 1,
title: 'Inception’,
director: 'Christopher Nolan',
genre: 'Science Fiction',
year: 2010

¥

{
_id: 2,
title: 'The Matrix’',
director: "Wachowskis',
genre: 'Science Fiction',
year: 1999

¥

{

_id: 3,

title: 'The Godfather',
director: 'Francis Ford Coppola’,
genre: 'Crime’,

year: 1972

// Combine query filter with a projection...

Dept. of Artificail intelligence & Data Science, AITM, Belagavi 13
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db.MovieDetails.find({ director: "Christopher Nolan" }, { title: 1, year: 1, id: 0 })

[ { title: 'Inception’, year: 2010 } ]

2b. Develop a MongoDB query to display the first 5 documents from the results obtained
in a. [use of limit and find] Using Above same Database

db.MovieDetails.insertMany([

{_id: 4, title: "Pulp Fiction", director: "Quentin Tarantino", genre: "Crime", year: 1994,
ratings: { imdb: 8.9, rottenTomatoes: 92 } },

{_id: 5, title: "The Shawshank Redemption", director: "Frank Darabont", genre:
"Drama", year: 1994, ratings: { imdb: 9.3, rottenTomatoes: 91 } },

{_id: 6, title: "The Dark Knight", director: "Christopher Nolan", genre: "Action", year:
2008, ratings: { imdb: 9.0, rottenTomatoes: 94 } },

{ id: 7, title: "Fight Club", director: "David Fincher", genre: "Drama", year: 1999,
ratings: { imdb: 8.8, rottenTomatoes: 79 } }

Ds

//Query with Projection and Limit command...

db.MovieDetails.find({}, { title: 1, director: 1, year: 1, id: 0 }).limit(5)

{ title: 'Inception’, director: 'Christopher Nolan', year: 2010 },

{ title: 'The Matrix', director: 'Wachowskis', year: 1999 },

{ title: 'The Godfather', director: 'Francis Ford Coppola', year: 1972 },
{ title: 'Pulp Fiction', director: 'Quentin Tarantino', year: 1994 },

{ title: 'The Shawshank Redemption', director: 'Frank Darabont', year: 1994 }
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Experiment 3: 3a. Execute query selectors (comparison selectors, logical selectors ) and
list out the results on any collection.

//To create the new database as well as switch the database if not existing

use companyDB

//To insert the multiple values or documents
db.Employees.insertMany([

{ name: "Alice", age: 30, department: "HR", salary: 50000, joinDate: new Date("2015-01-
15") },

{ name: "Bob", age: 24, department: "Engineering", salary: 70000, joinDate: new
Date("2019-03-10") },

{ name: "Charlie", age: 29, department: "Engineering", salary: 75000, joinDate: new
Date("2017-06-23") 1,

{ name: "David", age: 35, department: "Marketing", salary: 60000, joinDate: new
Date("2014-11-01") },

{ name: "Eve", age: 28, department: "Finance", salary: 80000, joinDate: new Date("2018-
08-19") }

D

1. $eq (Equal): Find employees in the “Engineering” department.
db.Employees.find({ department: { $eq: "Engineering" } }).pretty()

[

{
_id: Objectld('666c18217d3bfalfeacdedf?"),

name: 'Bob’,

age: 24,

department: 'Engineering’,

salary: 70000,

joinDate: ISODate('2019-03-10T00:00:00.000Z")
s

{
_id: Objectld('666c¢18217d3bfalfeacdcdfy'),

name: 'Charlie’,

age: 29,

department: 'Engineering’,

salary: 75000,

joinDate: ISODate('2017-06-23T00:00:00.000Z")

}
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2. $ne (Not Equal): Find employees who are not in the “HR” department.
db.Employees.find({ department: { $ne: "HR" } }).pretty()

[
{
_id: Objectld('666c¢18217d3bfalfeacdcdf7"),
name: 'Bob’,
age: 24,
department: 'Engineering’,
salary: 70000,

joinDate: ISODate('2019-03-10T00:00:00.000Z")

'
{
_id: Objectld('666c18217d3bfalfeacdcdfy'),
name: 'Charlie',
age: 29,
department: 'Engineering’,
salary: 75000,

joinDate: ISODate('2017-06-23T00:00:00.000Z")

¥
{
_id: Objectld('666¢c18217d3bfalfeacdcdf9'),
name: 'David',
age: 35,
department: 'Marketing',
salary: 60000,

joinDate: ISODate('2014-11-01T00:00:00.000Z")

¥
{
_1d: Objectld('666¢c18217d3bfal feacdcdfa'),
name: 'Eve’,
age: 28,
department: 'Finance',
salary: 80000,

joinDate: ISODate('2018-08-19T00:00:00.000Z")

}
]

3. $gt (Greater Than): Find employees who are older than 30.

db.Employees.find({ age: { $gt: 30 } }).pretty()

Dept. of Artificail intelligence & Data Science, AITM, Belagavi
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[

{

_1d: Objectld('666¢18217d3bfal feacdcdf9'),
name: 'David',

age: 35,

department: 'Marketing',

salary: 60000,

joinDate: ISODate('2014-11-01T00:00:00.000Z")

4.$1t (Less Than): Find employees with a salary less than 70000.
db.Employees.find({ salary: { $lt: 70000 } }).pretty()

[
{
_id: Objectld('666¢c18217d3bfalfeacdcdf6'),
name: 'Alice’,
age: 30,
department: 'HR',
salary: 50000,
joinDate: ISODate('2015-01-15T00:00:00.000Z")
¥
{
_id: Objectld('666c18217d3bfalfeacdcdf9'),
name: 'David',
age: 35,
department: 'Marketing',
salary: 60000,
joinDate: ISODate('2014-11-01T00:00:00.000Z")
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5. $gte (Greater Than or Equal): Find employees who joined on or after January 1, 2018.
db.Employees.find({ joinDate: { $gte: new Date("2018-01-01") } }).pretty()

[
{
_1d: Objectld('666¢18217d3bfal feacdcdf7'),
name: 'Bob’,
age: 24,
department: 'Engineering’,
salary: 70000,
joinDate: ISODate('2019-03-10T00:00:00.000Z")
¥
{
_id: Objectld('666c18217d3bfalfeacdcdfa’),
name: 'Eve’,
age: 28,
department: 'Finance',
salary: 80000,
joinDate: ISODate('2018-08-19T00:00:00.000Z")

6. $lte (Less Than or Equal): Find employees who are 28 years old or younger.

db.Employees.find({ age: { $lte: 28 } }).pretty()

[

{
_1d: Objectld('666¢c18217d3bfal feacdcdf7'),
name: 'Bob’,

age: 24,
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department: 'Engineering',

salary: 70000,

joinDate: ISODate('2019-03-10T00:00:00.000Z")
¥

{
_1d: Objectld('666¢c18217d3bfal feacdcdfa'),

name: 'Eve’',

age: 28,

department: 'Finance',

salary: 80000,

joinDate: ISODate('2018-08-19T00:00:00.000Z")

}
]

Queries Using Logical Selectors:

1. $and (Logical AND): Find employees who are in the “Engineering” department and
have a salary greater than 70000.

db.Employees.find({
$and: [
{ department: "Engineering" },
{ salary: { $gt: 70000 } }
]
})-pretty()

[

{
_1d: Objectld('666¢c18217d3bfal feacdcdfy'),

name: 'Charlie’,
age: 29,
department: 'Engineering’,

salary: 75000,

Dept. of Artificail intelligence & Data Science, AITM, Belagavi
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joinDate: ISODate('2017-06-23T00:00:00.000Z")

}
]

2.%or (Logical OR): Find employees who are either in the “HR” department or have a salary
less than 60000.

db.Employees.find({
$or: [
{ department: "HR" },
{ salary: { $It: 60000 } }
]
})-pretty()

[
{
_id: Objectld('666¢18217d3bfalfeacdcdfo"),
name: 'Alice’,
age: 30,
department: 'HR',
salary: 50000,
joinDate: ISODate('2015-01-15T00:00:00.000Z")
}
]

3. $not (Logical NOT): Find employees who are not in the “Engineering” department.

db.Employees.find({
department: {
$not: { $eq: "Engineering" }
}
})-pretty()

[

{

_1d: Objectld('666¢c18217d3bfal feacdcdf6'),
name: 'Alice’,

age: 30,

department: 'HR',

salary: 50000,

joinDate: ISODate('2015-01-15T00:00:00.000Z")
s
{

_1d: Objectld('666¢c18217d3bfal feacdcdf9'),
name: 'David',
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age: 35,
department: 'Marketing',
salary: 60000,

joinDate: ISODate('2014-11-01T00:00:00.000Z")

}s
{
_id: Objectld('666c¢18217d3bfalfeacdcdfa’),
name: 'Eve’,
age: 28,
department: 'Finance',
salary: 80000,

joinDate: ISODate('2018-08-19T00:00:00.000Z")

}
]

3. $nor (Logical NOR): Find employees who are neither in the “HR” department nor

have a salary greater than 75000.

db.Employees.find({
$nor: [
{ department: "HR" },
{ salary: { $gt: 75000 } }
]
})-pretty()

[

{

_id: Objectld('666c18217d3bfalfeacdcdf7'),
name: 'Bob’,

age: 24,

department: 'Engineering’,

salary: 70000,

joinDate: ISODate(2019-03-10T00:00:00.000Z")
5
{

_id: Objectld('666c18217d3bfalfeacdcdfl'),
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name: 'Charlie’,

age: 29,

department: 'Engineering’,

salary: 75000,

joinDate: ISODate('2017-06-23T00:00:00.000Z")

i

{
_id: Objectld('666c¢18217d3bfalfeacdcdf9"),

name: 'David',

age: 35,

department: 'Marketing',

salary: 60000,

joinDate: ISODate('2014-11-01T00:00:00.000Z")

}
]

3b. Execute query selectors (Geospatial selectors, Bitwise selectors ) and list out the

results on any collection.
Geospatial Selectors:
use geodatabase

db.Places.insertMany([

{ name: "Central Park", location: { type: "Point", coordinates: [-73.9654, 40.7829] } },

{ name: "Times Square", location: { type: "Point", coordinates: [-73.9851, 40.7580] } },

{ name: "Brooklyn Bridge", location: { type: "Point", coordinates: [-73.9969, 40.7061] } },

{ name: "Empire State Building", location: { type: "Point", coordinates: [-73.9857, 40.7488]

IS

{ name: "Statue of Liberty", location: { type: "Point", coordinates: [-74.0445, 40.6892] } }

D

// Create a geospatial index

db.Places.createIndex({ location: "2dsphere" })
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Geospatial Queries:

1. $near (Find places near a certain point): Find places near a specific coordinate, for

example, near Times Square.
db.Places.find({
location: {
$near: {
$geometry: {
type: "Point",
coordinates: [-73.9851, 40.7580]
¥
$maxDistance: 5000 // distance in meters
}
§
})-pretty()

[
{
_id: Objectld('666c25eb7d3bfal feacdcdfc'),
name: '"Times Square',
location: { type: 'Point', coordinates: [ -73.9851, 40.758 ] }
¥
{
_id: Objectld('666¢25eb7d3bfalfeacdcdfe'),
name: 'Empire State Building',
location: { type: 'Point', coordinates: [ -73.9857, 40.7488 ] }
¥
{
_id: Objectld('666c25eb7d3bfal feacdcdfb'),
name: 'Central Park’,
location: { type: 'Point', coordinates: [ -73.9654, 40.7829 | }
}
]

2. $geoWithin (Find places within a specific area): Find places within a specific
polygon, for example, an area covering part of Manhattan.

db.Places.find({
location: {
$geoWithin: {
$geometry: {
type: "Polygon",

coordinates: [
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[-70.016, 35.715],
[-74.014, 40.717],
[-73.990, 40.730],
[-73.990, 40.715],
[-70.016, 35.715]

}
}
}
})-pretty()

[

{
_id: Objectld('666c25eb7d3bfal feacdcdfd'),

name: 'Brooklyn Bridge',

location: { type: 'Point', coordinates: [ -73.9969, 40.7061 ] }

}
]

Bitwise Selectors:

use techDB

db.Devices.insertMany([
{ name: "Device A", status: 5 }, // Binary: 0101
{ name: "Device B", status: 3 }, // Binary: 0011
{ name: "Device C", status: 12 }, // Binary: 1100
{ name: "Device D", status: 10 }, // Binary: 1010

{ name: "Device E", status: 7 } // Binary: 0111
D
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Execute Bitwise Queries:

1. $bitsAllSet (Find documents where all bits are set): Find devices where the binary status
has both the 1st and 3rd bits set (binary mask 0101, or decimal 5).

db.Devices.find({
status: { $bitsAllSet: [0, 2] }

})-pretty()

[

{
_id: Objectld('666c¢28847d3bfalfeacdce00'"),

name: 'Device A',

status: 5

¥

{
_id: Objectld('666c¢28847d3bfalfeacdce04'),
name: 'Device E',

status: 7

}
]

2.$bitsAnySet (Find documents where any of the bits are set): Find devices where the binary
status has at least the 2nd bit set (binary mask 0010, or decimal 2).

db.Devices.find({
status: { $bitsAnySet: [1] }

})-pretty()
[

{
_1d: Objectld('666c28847d3bfalfeacdce0l"),

name: 'Device B',

status: 3

5
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{
_id: Objectld('666c¢28847d3bfalfeacdce03'),

name: 'Device D',
status: 10
}s

{
_id: Objectld('666c28847d3bfalfeacdce04'),

name: 'Device E',

status: 7

}
]

3.8bitsAllClear (Find documents where all bits are clear): Find devices where the binary
status has both the 2nd and 4th bits clear (binary mask 1010, or decimal 10).

db.Devices.find({
status: { $bitsAllClear: [1, 3] }

})-pretty()

[

{
_1d: Objectld('666c28847d3bfalfeacdce00'),

name: 'Device A,

status: 5

}
]

4. $bitsAnyClear (Find documents where any of the bits are clear): Find devices where the
binary status has at least the 1st bit clear (binary mask 0001, or decimal 1).
db.Devices.find({

status: { $bitsAnyClear: [0] }

})-pretty()
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{
_1d: Objectld('666c28847d3bfal feacdce02'),

name: 'Device C',

status: 12

i

{
_id: Objectld('666c28847d3bfalfeacdce03"),

name: 'Device D',

status: 10

}
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Experiment 4: Create and demonstrate how projection operators ($, $elematch and
$slice) would be used in the MongoDB.

use retailDB

db.Products.insertMany([
{
name: "Laptop",
brand: "BrandA",
features: [
{ name: "Processor", value: "Intel 17" },
{ name: "RAM", value: "16GB" },
{ name: "Storage", value: "512GB SSD" }
I,
reviews: [
{ user: "Alice", rating: 5, comment: "Excellent!" },
{ user: "Bob", rating: 4, comment: "Very good" },

{ user: "Charlie", rating: 3, comment: "Average" }

name: "Smartphone",
brand: "BrandB",
features: [
{ name: "Processor", value: "Snapdragon 888" },
{ name: "RAM", value: "8GB" },
{ name: "Storage", value: "256GB" }
I,
reviews: [
{ user: "Dave", rating: 4, comment: "Good phone" },

{ user: "Eve", rating: 2, comment: "Not satisfied" }

]
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D

Use Projection Operators:

1. $ Projection Operator: Find the product named “Laptop” and project the review from the
user “Alice”.

db.Products.find(
{ name: "Laptop", "reviews.user": "Alice" },
{ "reviews.$": 1 }

)-pretty()

{
_id: Objectld('666¢2f237d3bfalfeacdce0s'),

reviews: [ { user: 'Alice', rating: 5, comment: 'Excellent!" } ]

}
]

2.$elemMatch Projection Operator: Find the product named “Laptop” and project the review
where the rating is greater than 4.

db.Products.find(
{ name: "Laptop" },
{ reviews: { $elemMatch: { rating: { $gt: 4 } } } }

).pretty()

{
_id: Objectld('666c2f237d3bfalfeacdce0s'),

reviews: [ { user: 'Alice', rating: 5, comment: 'Excellent!' } ]
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;]

3. S$slice Projection Operator: Find the product named “Smartphone” and project the first
review.

db.Products.find(
{ name: "Smartphone" },
{ reviews: { $slice: 1 } }

).pretty()

{
_id: Objectld('666c2f237d3bfalfeacdce06'),

name: 'Smartphone’,
brand: 'BrandB',
features: [
{ name: "Processor’, value: 'Snapdragon 888' },
{ name: 'RAM, value: '8GB' },
{ name: 'Storage', value: '256GB' }
I
reviews: [ { user: 'Dave', rating: 4, comment: 'Good phone' } ]
}
]
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Experiment 5: Execute Aggregation operations ($avg, $min,$max, $push, $addToSet

etc.). students encourage to execute several queries to demonstrate various aggregation

operators)

use salesDB

db.Sales.insertMany([

{ date: new Date("2024-01-01"), product:

" Amar" }’

{ date: new Date("2024-01-02"), product:

"Babu" }’

{ date: new Date("2024-01-03"), product:

"Chandra" },

{ date: new Date("2024-01-04"), product:

"Amar" }’

{ date: new Date("2024-01-05"), product:

"Babu" },

{ date: new Date("2024-01-06"), product:

”DeVa" }

D

Execute Aggregation Operations:

"Laptop", price: 1200, quantity: 1, customer:

"Laptop", price: 1200, quantity: 2, customer:

"Mouse", price: 25, quantity: 5, customer:

"Keyboard", price: 45, quantity: 3, customer:

"Monitor", price: 300, quantity: 1, customer:

"Laptop", price: 1200, quantity: 1, customer:

1. $avg (Average): Calculate the average price of each product.

db.Sales.aggregate(|
{
$group: {
_id: "$product",
averagePrice: { $avg: "$price" }
}
b
D)-pretty()
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{ id: 'Laptop', averagePrice: 1200 },
{ id: 'Keyboard', averagePrice: 45 },
{ id: 'Mouse', averagePrice: 25 },

{ id: 'Monitor', averagePrice: 300 }

2. $min (Minimum): Find the minimum price of each product.

db.Sales.aggregate([
{
$group: {
_id: "$product",
minPrice: { $min: "$price" }
}
}
])-pretty()

{ id: 'Mouse', minPrice: 25 },
{ 1d: 'Keyboard', minPrice: 45 },
{ _id: 'Monitor', minPrice: 300 },

{ _id: 'Laptop', minPrice: 1200 }

3.$max (Maximum): Find the maximum price of each product.

db.Sales.aggregate([
{
$group: {
_id: "$product",
maxPrice: { $max: "$price" }
}
}
])-pretty()

[

{ id: 'Mouse', maxPrice: 25 },
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{ id: 'Keyboard', maxPrice: 45 },

{ id: 'Monitor', maxPrice: 300 },

{ id: 'Laptop', maxPrice: 1200 }
]

4. S$push (Push Values to an Array): Group sales by customer and push each purchased
product into an array.

db.Sales.aggregate([
{
$group: {
_id: "$customer",

products: { $push: "$product" }

}
}
]).pretty()

{ id: 'Babu', products: [ 'Laptop', 'Monitor' ] },
{ id: 'Amar’, products: [ 'Laptop', 'Keyboard' ] },
{ _id: 'Chandra', products: [ 'Mouse' ] },

{ id: 'Deva', products: [ 'Laptop' | }

5.8addToSet (Add Unique Values to an Array): Group sales by customer and add each unique

purchased product to an array.
db.Sales.aggregate([
{
$group: {
_id: "$customer",
uniqueProducts: { $addToSet: "$product” }
}

}
D-pretty()
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{ id: 'Amar', uniqueProducts: [ 'Keyboard', 'Laptop' | },

{ id: 'Babu', uniqueProducts: [ 'Monitor', 'Laptop' ] },

{ id: 'Deva', uniqueProducts: [ 'Laptop' | },

{ id: 'Chandra', uniqueProducts: [ 'Mouse' | } ]
Combining Aggregation Operations:

1. Calculate the total quantity and total sales amount for each product, and list all customers
who purchased each product.

db.Sales.aggregate(|
{
$group: {
_id: "$product",
totalQuantity: { $sum: "$quantity" },
totalSales: { $sum: { $Smultiply: ["Sprice", "$quantity"] } },
customers: { $addToSet: "$customer" }
}
}
]).pretty()

{
_id: 'Mouse',
totalQuantity: 5,
totalSales: 125,
customers: [ 'Chandra’ |
s
{
_1d: 'Keyboard',
totalQuantity: 3,
totalSales: 135,
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customers: [ 'Amar' |

55

{
_id: 'Monitor",
totalQuantity: 1,
totalSales: 300,
customers: [ 'Babu' |

55

{

_id: 'Laptop',
totalQuantity: 4,
totalSales: 4800,

customers: [ 'Amar', 'Babu', 'Deva’ |

}
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Experiment 6: Execute Aggregation Pipeline and its operations (pipeline must contain
$match, $group, $sort, Sproject, $skip etc. students encourage to execute several queries
to demonstrate various aggregation operators)

use restaurantDB
db.restaurants.insertMany([
{
name: "Biryani House",
cuisine: "Indian",
location: "Jayanagar",
reviews: [
{ user: "Aarav", rating: 5, comment: "Amazing biryani!" },

{ user: "Bhavana", rating: 4, comment: "Great place!" }

name: "Burger Joint",
cuisine: "American",
location: "Koramangala",
reviews: [
{ user: "Chirag", rating: 3, comment: "Average burger" },

{ user: "Devika", rating: 4, comment: "Good value" }

name: "Pasta House",
cuisine: "Italian",
location: "Rajajinagar",
reviews: [
{ user: "Esha", rating: 5, comment: "Delicious pasta!" },

{ user: "Farhan", rating: 4, comment: "Nice ambiance" }
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1
{

name: "Curry Palace",
cuisine: "Indian",
location: "Jayanagar",

reviews: [

{ user: "Gaurav", rating: 4, comment: "Spicy and tasty!" },

user: "Harini", rating: 5, comment: "Best curry in town!"
5 g9,

]
1
{

name: "Taco Stand",
cuisine: "Mexican",
location: "Jayanagar",

reviews: [

{ user: "Ishaan", rating: 5, comment: "Fantastic tacos!" },

user: "Jaya", rating: 4, comment: "Very authentic"
y g ry

}
D

Aggregation Pipeline and its operations:

1. Execute Aggregation Pipeline and its operations (pipeline must contain match, group, sort,

project, $skip etc.)
db.restaurants.aggregate(|
{
$match: {

"location": "Jayanagar"

h
I3
{
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$unwind: "$reviews"

}s
{
$group: {
_id: "$name",
averageRating: { $avg: "$reviews.rating" },

totalReviews: { $sum: 1 }

j
i

{
$sort: {

averageRating: -1
}
i
{
$project: {
_id: 0,
restaurant: "$_id",
averageRating: 1,
totalReviews: 1
}
i
{
$skip: 1
}
])-pretty()

{ averageRating: 4.5, totalReviews: 2, restaurant: 'Curry Palace' },

{ averageRating: 4.5, totalReviews: 2, restaurant: "Taco Stand' } ]
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Experiment 7: 7a. a. Find all listings with listing_url, name, address, host _picture url in
the listings And Reviews collection that have a host with a picture url.

use vacationRentals

db.listingsAndReviews.insertMany([

{

listing_url: "http://www.example.com/listing/123456",

name: "Beautiful Apartment",

address: {
street: "123 Main Street",
suburb: "Central",
city: "Metropolis",
country: "Wonderland"

¥

host: {

name: "Alice",

picture url: "http://www.example.com/images/host/host123.jpg"

}
¥

{
listing_url: "http://www.example.com/listing/654321",

name: "Cozy Cottage",
address: {
street: "456 Another St",
suburb: "North",
city: "Smallville",
country: "Wonderland"
s
host: {
name: "Bob",

picture url: ""
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listing_url: "http://www.example.com/listing/789012",
name: "Modern Condo",
address: {
street: "789 Side Road",
suburb: "East",
city: "Gotham",
country: "Wonderland"
¥
host: {
name: "Charlie",

picture url: "http://www.example.com/images/host/host789.jpg"

j
j
)

Query to Find Listings with Host Picture URLSs:

Now that the collection is set up, you can run the query to find all listings

with listing_url, name, address, and host picture url where the host has a picture URL.

db.listingsAndReviews.find(
{

"host.picture_url": { $exists: true, $ne: "" }
5

{

listing_url: 1,

name: 1,

address: 1,

"host.picture_url": 1
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}
)-pretty()

[

{
_1d: Objectld('666c40ce85a7615d27cdcdfb'),

listing_url: 'http://www.example.com/listing/123456',
name: 'Beautiful Apartment',
address: {
street: '123 Main Street',
suburb: 'Central',
city: 'Metropolis',
country: "Wonderland'
¥
host: { picture_url: 'http://www.example.com/images/host/host123.jpg' }
¥

{
_1d: Objectld('666c40ce85a7615d27cdcdfd"),

listing_url: 'http://www.example.com/listing/789012',
name: 'Modern Condo',
address: {
street: '789 Side Road',
suburb: 'East’,
city: 'Gotham',
country: "Wonderland'
s
host: { picture url: 'http://www.example.com/images/host/host789.jpg' }
b
]
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7b. Using E-commerce collection write a query to display reviews summary.

use ecommerce
db.products.insertMany(|
{
product id: 1,
name: "Laptop",
category: "Electronics",
price: 1200,
reviews: [
{ user: "Alice", rating: 5, comment: "Excellent!" },
{ user: "Bob", rating: 4, comment: "Very good" },

{ user: "Charlie", rating: 3, comment: "Average" }

product id: 2,

name: "Smartphone",

category: "Electronics",

price: 800,

reviews: [
{ user: "Dave", rating: 4, comment: "Good phone" },
{ user: "Eve", rating: 2, comment: "Not satisfied" },

{ user: "Frank", rating: 5, comment: "Amazing!" }

]
5
{

product _id: 3,

name: "Headphones",
category: "Accessories",

price: 150,
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reviews: [

{ user: "Grace", rating: 5, comment: "Great sound" },

{ user: "Heidi", rating: 3, comment: "Okay" }

j
D

To display a summary of reviews in an e-commerce collection, we can assume
the ecommerce database contains a products collection with documents structured to include
reviews. Each product document could have a reviews array with review details such as

rating, comment, and user.
db.products.aggregate([
{
$unwind: "$reviews"
¥
{
$group: {
_id: "$name",

totalReviews: { $sum: 1 },

averageRating: { $avg: "$reviews.rating" },

comments: { $push: "$reviews.comment" }

¥
{
$project: {
_id: 0,
product: "$_id",
totalReviews: 1,
averageRating: 1,
comments: 1

;3 Dopretty()
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totalReviews: 3,
averageRating: 4,
comments: [ 'Excellent!', 'Very good', 'Average' |,

product: 'Laptop'
¥

totalReviews: 3,
averageRating: 3.6666666666666665,
comments: [ 'Good phone', 'Not satisfied', '"Amazing!' ],

product: 'Smartphone'
¥

totalReviews: 2,
averageRating: 4,
comments: [ 'Great sound', 'Okay' |,

product: 'Headphones'
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Experiment 8: a. Demonstrate creation of different types of indexes on collection (unique,

sparse, compound and multikey indexes)
/I Switch to the restaurantDB database

use restaurantDB

// Insert sample documents into the restaurants collection
db.restaurants.insertMany([
{
name: "Biryani House",
cuisine: "Indian",
location: "Downtown",

reviews: [

{ user: "Aarav", rating: 5, comment: "Amazing biryani!" },
{ user: "Bhavana", rating: 4, comment: "Great place!" }
I,
contact: { phone: "1234567890", email: "contact@biryanihouse.com" }

1
{

name: "Curry Palace",
cuisine: "Indian",
location: "Downtown",

reviews: [

{ user: "Gaurav", rating: 4, comment: "Spicy and tasty!" },
{ user: "Harini", rating: 5, comment: "Best curry in town!" }
1,
contact: { phone: "0987654321", email: "contact@currypalace.com" }
s
{

name: "Taco Stand",
cuisine: "Mexican",

location: "Downtown",
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reviews: [
{ user: "Ishaan", rating: 5, comment: "Fantastic tacos!" },

{ user: "Jaya", rating: 4, comment: "Very authentic" }

I,
contact: { phone: "1122334455", email: "contact@tacostand.com" }

D

// Create a unique index on the contact.email field

db.restaurants.createIlndex({ "contact.email": 1 }, { unique: true })

/I Create a sparse index on the location field

db.restaurants.createlndex({ location: 1 }, { sparse: true })

/I Create a compound index on the name and location fields

db.restaurants.createIndex({ name: 1, location: 1 })

// Create a multikey index on the reviews field

db.restaurants.createlndex({ reviews: 1 })

// Verify the created indexes

db.restaurants.getIndexes()
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Program 9: a. Develop a query to demonstrate Text search using catalog data collection
for a given word

Create a text index on the fields you want to search
{

"id": 1,

"title": "Wireless Bluetooth Headphones",

"description": "High-quality sound with noise cancellation"

db.catalog.createIndex({ title: "text", description: "text" })

Perform a text search query for a given word
db.catalog.find(

{ $text: { $search: "Bluetooth" } },

{ score: { $meta: "textScore" } } // To get relevance score

).sort({ score: { $meta: "textScore" } })

b. Develop queries to illustrate excluding documents with certain words and phrases
MongoDB Text Search (Exclude documents containing a word)
db.collection.find({

$text: { $search: "some keyword" },

"field": { $not: /excludedWord/i }
1)

db.collection.find({
$text: { $search: "some keyword" },

"field": { $not: /apple/i }
$)
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Elasticsearch Query DSL

{
"query": {
"bool": {
"must": {
"match": { "content": "searchTerm" }
}s
"must_not": {
"match": { "content": "excludedWord" }
}
}
}
}

MongoDB Aggregation with Text Search Excluding

If you want to exclude documents containing "spam" in the text indexed

db.collection.aggregate(|
{
$match: {

$text: { $search: "yourSearchTerm" }

}
5

{
$match: {

"content": { $not: /spam/i }
}
)
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Experiment 10: Develop an aggregation pipeline to illustrate Text search on Catalog
data collection.

Aggregation Pipeline for Text Search on catalog Collection:
db.catalog.aggregate(|
{
$match: {
$text: { $search: "your search keywords" }
}
55

{
$addFields: {

score: { $meta: "textScore" }
}
¥
{

$sort: { score: -1 }
i
{

$project: {

title: 1,

description: 1,

price: 1,

score: 1

D

db.catalog.aggregate([

{
$match: {

$text: { $search: "wireless headphones" }
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h
1

{
$addFields: {

score: { $meta: "textScore" }

h
§s
{
$sort: { score: -1 }
¥
{
$project: {
title: 1,
description: 1,
price: 1,
score: 1
h
}
D
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Experiment 10:
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