DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA
SCIENCE, AITM BELAGAVI

LAB MANUAL

(2024-2025)

COMPUTER NETWORK
LABORATORY (IPCC)
BCS502

Institute Vision

To become a premier institute committed to academic excellence and global competence for the

holistic development of students.

Institute Mission

M1: Develop competent human resources, adopt outcome based education (OBE) and

implement cognitive assessment of students.
M2: Inculcate the traits of global competencies amongst the students.

M3: Nurture and train our students to have domain knowledge, develop the qualities of global
professionals and to have social consciousness for holistic development.

Department Vision

To deliver a quality and responsive education in the field of artificial intelligence and data

science emphasizing professional skills to face global challenges in the evolving IT paradigm.

Department Mission

« Leverage multiple pedagogical approaches to impart knowledge on the current and
emerging Al
technologies.

e Develop an inclusive and holistic ambiance that bolsters problem solving, cognitive
abilities and critical thinking.

o Enable students to develop trust worthiness, team spirit, understanding law-of-the-land,
social

behaviour to be a global stake holder

Program Specific Outcomes (PSQOs)

e PSO 1: To apply core knowledge of Artificial Intelligence, Machine Learning, Deep
Learning, Data Science, Big Data Analytics and Statistical Learning to develop

effective solutions for real-world problems.

e PSO 2: To demonstrate proficiency in specialized and emerging technologies such as
Natural Language Processing, Cloud Computing, Robotic Process Automation, Storage
Area Networks and the Internet of Things to meet the stringent and diverse professional

challenges.

e« PSO 3: To imbibe managerial skills, social responsibility, ethical and moral values
through courses in Management and Entrepreneurship, Software Engineering
Principles, Universal Human Values and Ability Enhancement Programs to meet the

industry and societal expectations.

Program Educational Objectives (PEOSs)

PEOL : Build a strong foundation in mathematics, core programming, artificial intelligence,
machine learning, and data science to enable graduates to analyze, design, and implement

intelligent systems for solving complex real-world problems.

PEO2 : Foster creativity, cognitive and research skills to analyze the requirements and
technical specifications of software to articulate novel engineering solutions for an efficient

product design.

PEO3 : Prepare graduates for dynamic career opportunities in Al and Data Science by
equipping them with interdisciplinary knowledge, adaptability, and practical exposure to tools

and techniques required for industry and research.

PEO4 : Instill a strong sense of ethics, professional responsibility, and human values,
empowering graduates to contribute positively to society and lead with integrity in their

professional domains.

PEO5 : Encourage graduates to pursue higher education, certification program,
entrepreneurial ventures, etc. by nurturing a mindset of continuous learning and awareness of

global trends and challenges.

Program Outcomes (POs)
PO 1: Engineering Knowledge: Apply the Knowledge of Mathematics, Science, Engineering
Fundamentals, and an Engineering specialization to the solution of complex Engineering
problems.

PO 2: Problem Analysis: Identify, Formulate, Review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of Mathematics,
natural sciences and engineering sciences.

PO 3: Design/Development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
conditions.

PO 4. Conduct investigations on complex problems: Use research based knowledge and
research methods including design of Experiments, analysis and interpretation of data, and
synthesis of Information to provide valid conclusions.

PO 5: Modern tool usage: Create, select, and apply appropriate technique, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

PO 6: The Engineer and Society: Apply reasoning informed by the contextual knowledge to
assess society, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

PO 7: Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

PO 8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

PO 9: Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

PO 10: Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

PO 11: Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s work, as a member and leader
in a team, to manage projects and in multidisciplinary environments

PO 12: Lifelong learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological change.

g A

DEPARTMENT OF COMPUTERSCIENCE & ENGINEERING

TABLE OF CONTENTS
BASICS OF NS2

Introduction to NS2
XGraph

Awk and advanced

LAB PROGRAMS
Implement three node point to point network . . .
Implement transmission of Ping messages . . .
Implement an Ethernet Lan using n-nodes with multiple traffic . . .
Write a program for error detecting code using CRC-CCITT ...
Develop a program to implement a sliding window protocol in the

data link layer ...

Write a program to find the shortest path (Bellman-Ford Algorithm)...

Client server program using TCP/IP sockets . ..

Client-Server program using Datagram Sockets. ..

Program for RSA Algorithm to Encrypt and Decrypt the Data...
Program for Congestion Control Using Leaky Bucket Algorithm ...

Viva-Voce Questions

10

12
14
18
22

27
28
31
35
38
43
47

Computer Network Laboratory (IPCC) BCS502 2024-2025

PART-A

Introduction to NS-2:

Widely known as NS2, is simply an event driven simulation tool.

Useful in studying the dynamic nature of communication networks.

Simulation of wired as well as wireless network functions and protocols (e.g., routing
algorithms, TCP, UDP) can be done using NS2.

In general, NS2 provides users with a way of specifying such network protocols and
simulating their corresponding behaviors.

Basic Architecture of NS2

Tel Simulation Simulation Simulation
Simulation Objects Objects Trace
Script File
" C++ OTcl s
% NS2 Shell Executable Command (ns) —
S s T,
. NAM 1 | Xgraph |
| (Animation) | | (Plotting) |
Tcl scriptinp ~ TTTTTTTTTT TmmmmmmTT

Tclis ageneral purpose scripting language. [Interpreter]
Tcl runs on most of the platforms such as Unix, Windows, and Mac.
The strength of Tcl is its simplicity.

It is not necessary to declare a data type for variable prior to the usage.

Basics of TCL
Syntax: command argl arg2 arg3
O Hello World!
puts stdout{Hello, World!}

Hello, World!
O Variables Command Substitution

setab set len [string length foobar]

setb $a set len [expr [string length foobar] + 9]

DEPARTMENT OF Al & DS,AITM Pageno 1l

Computer Network Laboratory (IPCC) BCS502 2024-2025

Simple Arithmetic
expr7.2/4

O Procedures

proc Diag {a b} {

set ¢ [expr sqrt($a * $a + $b * $b)]

return $c }
puts —Diagonal of a 3, 4 right triangle is [Diag 3 4]l
Output: Diagonal of a 3, 4 right triangle is 5.0

O Loops
while{$i < $n} { for {set i 0} {$i <$n} {incri} {
} }

Wired TCL Script Components

Create the event scheduler

Open new files & turn on the tracing

Create the nodes

Setup the links

Configure the traffic type (e.g., TCP, UDP, etc)

Set the time of traffic generation (e.g., CBR, FTP)

Terminate the simulation
NS Simulator Preliminaries.

1. Initialization and termination aspects of the ns simulator.
Definition of network nodes, links, queues and topology.
Definition of agents and of applications.

The nam visualization tool.

o B~ W

Tracing and random variables.

Initialization and Termination of TCL Script in NS-2

An ns simulation starts with the command

set ns [new Simulator]

Which is thus the first line in the tcl script? This line declares a new variable as using the set

command, you can call this variable as you wish, In general people declares it as ns because

DEPARTMENT OF Al & DS,AITM Page no 2

Computer Network Laboratory (IPCC) BCS502 2024-2025

it is an instance of the Simulator class, so an object the code[new Simulator] is indeed the
installation of the class Simulator using the reserved word new.

In order to have output files with data on the simulation (trace files) or files used for
visualization (nam files), we need to create the files using —openl command:

#Open the Trace file

set tracefilel [open out.tr w]

Sns trace-all Stracefilel

#Open the NAM trace file

set namfile [open out.nam w]

Sns namtrace-allSnamfile

The above creates a trace file called —out.trl and a nam visualization trace file called
—out.naml. Within the tcl script, these files are not called explicitly by their names, but
instead by pointers that are declared above and called —tracefile1l and —namfilel respectively.
Remark that they begins with a # symbol. The second line open the file —out.trl to be used for
writing, declared with the letter —wl. The third line uses a simulator method called trace-all
that have as parameter the name of the file where the traces will go.

The last line tells the simulator to record all simulation traces in NAM input format. It
also gives the file name that the trace will be written to later by the command $ns flush-trace.
In our case, this will be the file pointed at by the pointer —$namfilel, i.e the file —out.trl.

The termination of the program is done using a —finishl procedure.

#Define a ,,finish* procedure

Procfinish { } {

global ns tracefilel namfile
Sns flush-trace

Close Stracefilel

Close $namfile

Execnam out.nam &

Exit 0

}

DEPARTMENT OF Al & DS,AITM Page no 3

Computer Network Laboratory (IPCC) BCS502 2024-2025

The word proc declares a procedure in this case called finish and without arguments.
The word global is used to tell that we are using variables declared outside the procedure.
The simulator method —flush-trace” will dump the traces on the respective files. The tcl
command —close” closes the trace files defined before and exec executes the nam program for
visualization. The command exit will ends the application and return the number 0 as status
to the system. Zero is the default for a clean exit. Other values can be used to say that is a exit
because something fails.

At the end of ns program we should call the procedure —finishl and specify at what
time the termination should occur. For example,
Sns at 125.0 “finish”

will be used to call —finishl at time 125sec.Indeed,the at method of the simulator allows us to

schedule events explicitly.

The simulation can then begin using the command

Sns run

Definition of a network of links and nodes
The way to define a node is

set n0 [Sns node]

The node is created which is printed by the variable n0. When we shall refer to that node in
the script we shall thus write $n0.
Once we define several nodes, we can define the links that connect them. An example

of a definition of a link is:

Sns duplex-link $n0 $n2 10Mb 10ms DropTail

Which means that $n0 and $n2 are connected using a bi-directional link that has 10ms
of propagation delay and a capacity of 10Mb per sec for each direction.

To define a directional link instead of a bi-directional one, we should replace —duplex-
linkl by —simplex-linkl.

In NS, an output queue of a node is implemented as a part of each link whose input is
that node. The definition of the link then includes the way to handle overflow at that queue.
In our case, if the buffer capacity of the output queue is exceeded then the last packet to

arrive is dropped. Many alternative options exist, such as the RED (Random Early Discard)

DEPARTMENT OF Al & DS,AITM Page no 4

Computer Network Laboratory (IPCC) BCS502 2024-2025

mechanism, the FQ (Fair Queuing), the DRR (Deficit Round Robin), the stochastic Fair
Queuing (SFQ) and the CBQ (which including a priority and a round-robin scheduler).

In ns, an output queue of a node is implemented as a part of each link whose input is
that node. We should also define the buffer capacity of the queue related to each link. An

example would be:

#set Queue Size of link (n0-n2) to 20

Sns queue-limit $n0 $n2 20

Agents and Applications
We need to define routing (sources, destinations) the agents (protocols) the

application that use them.

FTP over TCP

TCP is a dynamic reliable congestion control protocol. It uses Acknowledgements
created by the destination to know whether packets are well received.

There are number variants of the TCP protocol, such as Tahoe, Reno, NewReno,

Vegas. The type of agent appears in the first line:

set tcp [new Agent/TCP]

The command $ns attach-agent $n0 $tcp defines the source node of the tcp connection.

The command

set sink [new Agent /TCPSink]

Defines the behavior of the destination node of TCP and assigns to it a pointer called sink.

#Setup a UDP connection

set udp [new Agent/UDP]
Sns attach-agent $n1 Sudp
set null [new Agent/Null]
Sns attach-agent $n5 $null

Sns connect Sudp Snull

Sudp set fid_2

DEPARTMENT OF Al & DS,AITM Page no 5

Computer Network Laboratory (IPCC) BCS502 2024-2025

#setup a CBR over UDP connection

set cbr [new Application/Traffic/CBR]
Scbr attach-agent Sudp

Scbr set packetsize_ 100

Scbr setrate_0.01Mb

Scbr set random_ false

Above shows the definition of a CBR application using a UDP agent

The command $ns attach-agent $n4 $sink defines the destination node. The
command $ns connect $tcp $sink finally makes the TCP connection between the source and
destination nodes.

TCP has many parameters with initial fixed defaults values that can be changed if
mentioned explicitly. For example, the default TCP packet size has a size of 1000bytes.This
can be changed to another value, say 552bytes, using the command $tcp set packetSize
552.

When we have several flows, we may wish to distinguish them so that we can identify
them with different colors in the visualization part. This is done by the command $tcp set
fid_ 1 that assigns to the TCP connection a flow identification of —11.We shall later give the

flow identification of —2I to the UDP connection.

CBR over UDP
A UDP source and destination is defined in a similar way as in the case of TCP.
Instead of defining the rate in the command $cbr set rate_ 0.01Mb, one can define the

time interval between transmission of packets using the command.

Scbr setinterval_0.005

The packet size can be set to some value using

Scbr set packetSize_ <packet size>

DEPARTMENT OF Al & DS,AITM Page no 6

Computer Network Laboratory (IPCC) BCS502 2024-2025

Scheduling Events
NS is a discrete event based simulation. The tcp script defines when event should
occur. The initializing command set ns [new Simulator] creates an event scheduler, and

events are then scheduled using the format:

Sns at <time> <event>

The scheduler is started whenrunning ns that is through the command $ns run.

The beginning and end of the FTP and CBR application can be done through the following

command

Sns at 0.1 “Scbr start”
Sns at 1.0 “ Sftp start”
Sns at 124.0 “Sftp stop”

Sns at 124.5 “Scbr stop”

Structure of Trace Files
When tracing into an output ASCII file, the trace is organized in 12 fields as follows

in fig shown below, The meaning of the fields are:

Event | Time | From | To PKT | PKT | Flags | Fid | Src | Dest | Seq | Pkt

Node | Node | Type | Size Addr | Addr | Num | id

1 The first field is the event type. It is given by one of four possible symbols r, +, -, d which
correspond respectively to receive (at the output of the link), enqueued, dequeued and
dropped.

The second field gives the time at which the event occurs.

Gives Gives the input node of the link at which the event occurs.

the output node of the link at which the event occurs.

Gives the packet type (eg CBR or TCP)

Gives the packet size

Some flags

This is the flow id (fid) of IPv6 that a user can set for each flow at the input OTcl script
one can further use this field for analysis purposes; it is also used when specifying stream
color for the NAM display.

DEPARTMENT OF Al & DS,AITM Page no 7

Computer Network Laboratory (IPCC) BCS502 2024-2025

9. This is the source address given in the form of —node.portl.

10. This is the destination address, given in the same form.

11. This is the network layer protocol’s packet sequence number. Even though UDP
implementations in a real network do not use sequence number, ns keeps track of UDP
packet sequence number for analysis purposes

12. The last field shows the Unique id of the packet.

DEPARTMENT OF Al & DS,AITM Page no 8

Computer Network Laboratory (IPCC) BCS502 2024-2025

XGRAPH

The xgraph program draws a graph on an x-display given data read from either data
file or from standard input if no files are specified. It can display upto 64 independent data
sets using different colors and line styles for each set. It annotates the graph with a title, axis

labels, grid lines or tick marks, grid labels and a legend.

Syntax:

Xgraph [options] file-name

Options are listed here
/-bd <color> (Border)

This specifies the border color of the xgraph window.
/-bg <color> (Background)

This specifies the background color of the xgraph window.
/-fg<color> (Foreground)

This specifies the foreground color of the xgraph window.
[-If <fontname> (LabelFont)

All axis labelsand grid labels are drawn using this font.
[-t<string> (Title Text)

This string is centered at the top of the graph.
/-x <unit name> (XunitText)

This is the unit name for the x-axis. Its default is —XI.
/-y <unit name> (YunitText)

This is the unit name for the y-axis. Its default is —Y]I.

DEPARTMENT OF Al & DS,AITM Page no 9

Computer Network Laboratory (IPCC) BCS502 2024-2025

Awk- An Advanced

Awk is a programmable, pattern-matching, and processing tool available in UNIX. It
works equally well with text and numbers.

Awk is not just a command, but a programming language too. In other words, awk
utility is a pattern scanning and processing language. It searches one or more files to see if
they contain lines that match specified patterns and then perform associated actions, such as
writing the line to the standard output or incrementing a counter each time it finds a match.

Syntax:

awk option ‘selection_criteria {action} file(s)

Here, selection_criteria filters input and select lines for the action component to act
upon. The selection_criteria is enclosed within single quotes and the action within the curly
braces. Both the selection_criteria and action forms an awk program.

Example: $ awk ,,/manager/ {print}* emp.Ist

Variables

Awk allows the user to use variables of there choice. You can now print a serial
number, using the variable kount, and apply it those directors drawing a salary exceeding
6700:
$ awk —F”|” ,,$3 == “director” && $6 > 6700 {
kount =kount+1
printf « %3f %20s %-12s %d\n”, kount,$2,$3,$6 }* empn.Ist

THE —f OPTION: STORING awk PROGRAMS IN AFILE

You should holds large awk programs in separate file and provide them with the awk
extension for easier identification. Let’s first store the previous program in the file
empawk.awk:
$ cat empawk.awk

Observe that this time we haven’t used quotes to enclose the awk program. Yo u can

now use awk with the —f filename option to obtain the same output:

Awk —F”|” —f empawk.awk empn.lst

DEPARTMENT OF Al & DS,AITM Page no 10

Computer Network Laboratory (IPCC) BCS502 2024-2025

THE BEGIN AND END SECTIONS

Awk statements are usually applied to all lines selected by the address, and if there are
no addresses, then they are applied to every line of input. But, if you have to print something
before processing the first line, for example, a heading, then the BEGIN section can be used
gainfully. Similarly, the end section useful in printing some totals after processing is over.
The BEGIN and END sections are optional and take the form

BEGIN {action}

END {action}

These two sections, when present, are delimited by the body of the awk program. You
can use them to print a suitable heading at the beginning and the average salary at the end.
BUILT-IN VARIABLES

Awk has several built-in variables. They are all assigned automatically, though it is
also possible for a user to reassign some of them. You have already used NR, which signifies
the record number of the current line. We’ll now have a brief look at some of the other
variable.

The FS Variable: as stated elsewhere, awk uses a contiguous string of spaces as the default
field delimiter. FS redefines this field separator, which in the sample database happens to be
the |. When used at all, it must occur in the BEGIN section so that the body of the program
knows its value before it starts processing:

BEGIN {FS="|"}

This is an alternative to the —F option which does the same thing.

The OFS Variable: when you used the print statement with comma-separated arguments,
each argument was separated from the other by a space. This is awk’s default output field
separator, and can reassigned using the variable OFS in the BEGIN section:

BEGIN { OFS="~"}

When you reassign this variable with a ~ (tilde), awk will use this character for delimiting the
print arguments. This is a useful variable for creating lines with delimited fields.

The NF variable: NF comes in quite handy for cleaning up a database of lines that don’t
contain the right number of fields. By using it on a file, say emp.Ist, you can locate those lines
not having 6 fields, and which have crept in due to faulty data entry:

$awk ,,BEGIN {FS = «}

NF! =6 {

Print “Record No “, NR, “has”, “fields”}* empx.Ist

DEPARTMENT OF Al & DS,AITM Page no 11

Computer Network Laboratory (IPCC) BCS502 2024-2025

-:Laboratory Programs:-

Experiment No: 1 Date:
THREE NODE POINT TO POINT NETWORK

Aim: Implement three nodes point — to — point network with duplex links between them. Set
the queue size, vary the bandwidth and find the number of packets dropped.

setns [new Simulator] # Letter S is capital
set nf [open labl.nam w] # open a nam trace file in write mode
$ns namtrace-all $nf # nf nam filename
set tf [open labl.tr w] # tf trace filename

$ns trace-all $tf

proc finish { }{
global ns nf tf
$ns flush-trace # clears trace file contents
close $nf
close $tf
execham labl.nam &
exit 0
}
setn0 [$ns node] # creates 3 nodes
set n2 [$ns node]
setn3 [$ns node]

$ns duplex-link $n0 $n2 200Mb 10ms DropTail # establishing links
$ns duplex-link $n2 $n3 1Mb 1000ms DropTail
$ns queue-limit $n0 $n2 10

setudpO [new Agent/UDP] # attaching transport layer protocols
$ns attach-agent $n0 $udp0
setcbr0 [new Application/Traffic/CBR] # attaching application layer protocols

$cbr0 set packetSize_ 500
$cbr0 setinterval _ 0.005
$cbr0 attach-agent $udp0

set null0 [new Agent/Null] # creating sink(destination) node
$ns attach-agent $n3 $null0
$ns connect $udp0 $null0

$ns at 0.1 ""$cbroO start™
$ns at 1.0 ""finish"
$ns run

AWK file: (Open a new editor using “vi command” and write awk file and save with “.awk”
extension)

#immediately after BEGIN should open braces ,,{,,

DEPARTMENT OF Al & DS,AITM Page no 12

ivities () Termina L Nov 13 05:11

Computer Network Laboratory (IPCC) BCS502 2024-2025

BEGIN{ c=0;}

if($1=="d")
{ Ct++;
printf(*'%s\t%s\n"*,$5,$11);
}

END{ printf(""The number of packets dropped is %od\n**,c); }

Steps for execution

» Open gedit editor and type program. Program name should have the extension
“.tcl

[root@localhost ~]# gedit labl.tcl
» Save the program and close the file.
» Open gedit editor and type awk program. Program name should have the
extension “.awk ”
[root@localhost ~]# gedit labl.awk
Save the program and close the file.
Run the simulation program
[root@localhost~]# ns labl.tcl
» Here “ns” indicates network simulator. We get the topology shown in the
snapshot.
» Now press the play button in the simulation window and the simulation will
begins.
> After simulation is completed run awk file to see the output,
[root@localhost~]# awk —f labl.awk labl.tr
> To see the trace file contents open the file as,

[root@localhost~]# gedit labl.tr

VY VY

Trace file contains 12 columns:

Event type, Event time, From Node, To Node, Packet Type, Packet Size, Flags
(indicated by --------), Flow ID, Source address, Destination address, Sequence 1D,
Packet ID , OUTPUT:

student@student-VirtualBox: ~

student@student-VirtualBox: ~

‘e BOPRE NS
|78

(IS N | IlIIIIIlIV|Il|l|||l|vIII‘IIHIHIIIIll
A T Y W R e (WS TSRS ry—

Contents of Trace File Output

DEPARTMENT OF Al & DS,AITM Page no 13

Computer Network Laboratory (IPCC) BCS502

2024-2025

Experiment No: 2

TRANSMISSION OF PING MESSAGE

Aim: Implement transmission of ping messages/trace route over a network topology

consisting of 6 nodes and find the number of packets dropped due to congestion.

set ns [new Simulator]

setnf [open lab2.nam w]
$ns namtrace-all $nf

set tf [open lab2.tr w]
$ns trace-all $tf

set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]

$ns duplex-link $n0 $n4 1005Mb 1ms DropTail
$ns duplex-link $n1 $n4 50Mb 1ms DropTail
$ns duplex-link $n2 $n4 2000Mb 1ms DropTail
$ns duplex-link $n3 $n4 200Mb 1ms DropTail
$ns duplex-link $n4 $n5 1Mb 1ms DropTail

setpl [new Agent/Ping] # letters A and P should be capital
$ns attach-agent $n0 $p1

$p1l set packetSize 50000

$p1 setinterval_ 0.0001

setp2 [new Agent/Ping] # letters A and P should be capital
$ns attach-agent $n1 $p2

set p3 [new Agent/Ping] # letters A and P should be capital
$ns attach-agent $n2 $p3

$p3 set packetSize_ 30000

$p3 setinterval_ 0.00001

set p4 [new Agent/Ping] # letters A and P should be capital
$ns attach-agent $n3 $p4

set p5 [new Agent/Ping] # letters A and P should be capital
$ns attach-agent $n5 $p5

$ns queue-limit $n0 $n4 5
$ns queue-limit $n2 $n4 3

DEPARTMENT OF Al & DS,AITM

Page no 14

Computer Network Laboratory (IPCC) BCS502 2024-2025

$ns queue-limit $n4 $n5 2

Agent/Ping instproc recv {from rtt} {

$self instvar node

puts "'node [$node_ id] received answer from $from with round trip time $rtt msec™

}

please provide space between $node_ and id. No space between $ and from. No space
between and $ and rtt */

$ns connect $p1 $p5
$ns connect $p3 $p4

proc finish { }{
global ns nf tf

$ns flush-trace

close $nf

close $tf

exec nam lab2.nam &
exit 0

}

$ns at 0.1 "$pl send"
$ns at0.2 ""$p1 send"
$ns at 0.3 ""$pl send"
$ns at0.4 ""$p1 send"
$ns at 0.5 "$p1 send"
$ns at 0.6 ""$p1 send"
$ns at 0.7 "$pl send"
$ns at 0.8 ""$p1 send"
$ns at 0.9 ""$pl send"
$ns at 1.0 ""$p1 send"

$ns at0.1 "'$p3 send"
$ns at 0.2 ""$p3 send"
$ns at 0.3 ""$p3 send"
$ns at 0.4 ""$p3 send"
$ns at 0.5 "$p3 send"
$ns at 0.6 ""$p3 send"
$ns at0.7 "'$p3 send"
$ns at 0.8 ""$p3 send"
$ns at 0.9 ""$p3 send"
$ns at 1.0 "$p3 send"

$ns at 2.0 ""finish"
$ns run

AWK file: (Open a new editor using “gedit command’ and write awk file and save with
“.awk” extension)

BEGIN{
drop=0;
}

DEPARTMENT OF Al & DS,AITM Page no 15

Computer Network Laboratory (IPCC) BCS502 2024-2025

{
if($1=="d")
{

drop++;
}

}
END{

printf(*"Total number of %s packets dropped due to congestion =%d\n",$5,drop);
}

Steps for execution

» Open gedit editor and type program. Program name should have the extension
“.tel

[root@localhost ~]# gedit lab2.tcl
» Save the program and close the file.

» Open gedit editor and type awk program. Program name should have the
extension “.awk ”
[root@localhost ~]# gedit lab2.awk
» Save the program and close the file.
> Run the simulation program
[root@localhost~]# ns lab2.tcl
» Here “ns” indicates network simulator. We get the topology shown in the
snapshot.
» Now press the play button in the simulation window and the simulation will
begins.
» After simulation is completed run awk file to see the output,
[root@localhost~]# awk —f lab2.awk lab2.tr
> To see the trace file contents open the file as,

[root@localhost~]# gedit lab2.tr

& i fom BNL By L Do (L1100 A0 & ipiomm Aom AR08 5 Ovo,umx.,.u:md

e 28 Yov lemd Tan fido

" « n > " Lo S 2

2
O

J

&

Mokt ORI AR et N 8 ek >l

0
| W ot hcinit=] s sl | (N Comte]

k|

| @ ovockes-| Nue Conke 1} um ot

Topology Output 1

DEPARTMENT OF Al & DS,AITM Page no 16

Computer Network Laboratory (IPCC) BCS502 2024-2025

& Mgz Aroes @R B 5
fe Bt Yow Jomsal Ty Hep -
[roctélocalbons ~|2 sk -f lod.ank lad 1y <

Nusber of ping packets drepped due to comgesticn are 20 A
(rootélocathast ~j2 |

(@] Wi wour

Output 2

DEPARTMENT OF Al & DS ,AITM Page no 17

Computer Network Laboratory (IPCC) BCS502 2024-2025

Experiment No: 3 Date:
ETHERNET LAN USING N-NODES WITH MULTIPLE TRAFFIC

Aim: Implement an Ethernet LAN using n nodes and set multiple traffic nodes and plot
congestion window for different source / destination

set ns [new Simulator]
set tf [open lab3.tr w]
$ns trace-all $tf

set nf [open lab3.nam w]
$ns namtrace-all $nf

setn0 [$ns node]
$n0 color ""magenta"
$n0 label *'src1"
set n1 [$ns node]

set n2 [$ns node]

$n2 color ""magenta"
$n2 label "'src2"
setn3 [$ns node]
$n3 color "blue"
$n3 label ""dest2"
set n4 [$ns node]
set n5 [$ns node]
$n5 color "blue™
$n5 label ""dest1"

$ns make-lan "'$n0 $n1 $n2 $n3 $n4" 100Mb 100ms LL Queue/ DropTail Mac/802_3
$ns duplex-link $n4 $n5 1Mb 1ms DropTail

settcpO [new Agent/TCP]
$ns attach-agent $n0 $tcpO

set ftp0 [new Application/FTP]
$ftp0 attach-agent $tcp0

$ftp0 set packetSize_ 500
$ftp0 setinterval_ 0.0001

setsink5 [new Agent/TCPSink]
$ns attach-agent $n5 $sink5

$ns connect $tcp0 $sink5

settcp2 [new Agent/TCP]
$ns attach-agent $n2 $tcp2

set ftp2 [new Application/FTP]
$ftp2 attach-agent $tcp2

DEPARTMENT OF Al & DS,AITM Page no 18

Computer Network Laboratory (IPCC) BCS502 2024-2025

$ftp2 set packetSize_ 600

$ftp2 setinterval_ 0.001
setsink3 [new Agent/TCPSink]
$ns attach-agent $n3 $sink3
$ns connect $tcp2 $sink3

set filel [open filel.tr w]
$tcp0 attach $filel

set file2 [open file2.tr w]
$tcp2 attach $file2

$tcpO trace cwnd_ # must put underscore (_) after cwnd and no space between them
$tcp2 trace cwnd_

proc finish { } {

global ns nf tf

$ns flush-trace

close $tf

close $nf

exec ham lab3.nam &
exit 0

}

$ns at 0.1 ""$ftp0 start™
$ns at 5 ""$ftp0 stop™
$ns at 7 "$ftp0 start™
$ns at 0.2 ""$ftp2 start™
$ns at 8 ""$ftp2 stop™
$ns at 14 ""$ftp0 stop™*
$ns at 10 "$ftp2 start™
$ns at 15 ""$ftp2 stop™

$ns at 16 ""finish"'
$ns run

AWK file: (Open a new editor using “gedit command’ and write awk file and save with
“.awk” extension)

cwnd:- means congestion window

BEGIN {

}
{

if($6==""cwnd_"") # don*t leave space afterwriting cwnd_
printf(""%f\t%of\t\n"" $1,$7); # you must put \n in printf

}
END{

}

DEPARTMENT OF Al & DS,AITM Page no 19

Computer Network Laboratory (IPCC) BCS502

2024-2025

Steps for execution

» Open gedit editor and type program. Program name should have the extension

>

“.tel
[root@localhost ~]# gedit lab3.tcl
Save the program and close the file.
Open gedit editor and type awk program. Program name should have the
extension “.awk ”

[root@localhost ~]# gedit lab3.awk
Save the program and close the file.
Run the simulation program

[root@localhost~]# ns lab3.tcl
Here “ns” indicates network simulator. We get the topology shown in the
snapshot.
Now press the play button in the simulation window and the simulation will
begins.
After simulation is completed run awk file to see the output ,
[root@localhost~]# awk —f lab3.awk filel.tr > al
[root@localhost~]# awk —f lab3.awk file2.tr > a2

[root@localhost~]# xgraph al a2\
Here we are using the congestion window trace files i.e. filel.tr and file2.tr and we
are redirecting the contents of those files to new files say al and a2 using output
redirection operator (>).

To see the trace file contents open the file as ,

Topology:

DEPARTMENT OF Al & DS,AITM

sam: jroctfi, nam S EIE |

e \eews fodysis Toel 17 sam

« - | > " MWEEss Stepc 200me

e
5

| | | | O 0l R | | | | |
IlflIlflilllllllllillIIIlllllllll‘lllllllll!llﬂmlﬂHllI!llbIlIIlllIlIlﬂllI;llll|‘|IlINIIIIII!ISIII‘IHIIEIIIII!I“IIIIIINIIII

Mowlap Ca B Cr B Reaben 10 % Reoke wagn | st

#|[ana | otoca Jnum pot] | am Corsy L

Page no 20

Computer Network Laboratory (IPCC) BCS502 2024-2025

Output:

DEPARTMENT OF Al & DS,AITM Page no 21

Computer Network Laboratory (IPCC) BCS502 2024-2025

Experiment No: 4 Date:
Error Detecting Code Using CRC-CCITT (16-bit)

Aim: Write a Program for ERROR detecting code using CRC-CCITT (16bit).

Whenever digital data is stored or interfaced, data corruption might occur. Since the
beginning of computer science, developers have been thinking of ways to deal with this type
of problem. For serial data they came up with the solution to attach a parity bit to each sent
byte. This simple detection mechanism works if an odd number of bits in a byte changes, but
an even number of false bits in one byte will not be detected by the parity check. To
overcome this problem developers have searched for mathematical sound mechanisms to
detect multiple false bits. The CRC calculation or cyclic redundancy check was the result of
this. Nowadays CRC calculations are used in all types of communications. All packets sent
over a network connection are checked with a CRC. Also each data block on your hard disk
has a CRC value attached to it. Modern computer world cannot do without these CRC
calculations. So let's see why they are so widely used. The answer is simple; they are
powerful, detect many types of errors and are extremely fast to calculate especially when

dedicated hardware chips are used.

The idea behind CRC calculation is to look at the data as one large binary number.
This number is divided by a certain value and the remainder of the calculation is called the
CRC. Dividing in the CRC calculation at first looks to cost a lot of computing power, but it
can be performed very quickly if we use a method similar to the one learned at school. We
will as an example calculate the remainder for the character 'm'—which is 1101101 in binary
notation—by dividing it by 19 or 10011. Please note that 19 is an odd number. This is
necessary as we will see further on. Please refer to your schoolbooks as the binary calculation

method here is not very different from the decimal method you learned when you were

DEPARTMENT OF Al & DS,AITM Page no 22

Computer Network Laboratory (IPCC) BCS502 2024-2025

young. It might only look a little bit strange. Also notations differ between countries, but the
method is similar.

With decimal calculations you can quickly check that 109 divided by 19 gives a
quotient of 5 with 14 as the remainder. But what we also see in the scheme is that every bit
extra to check only costs one binary comparison and in 50% of the cases one binary
subtraction. You can easily increase the number of bits of the test data string—for example to
56 bits if we use our example value "Lammert"—and the result can be calculated with 56
binary comparisons and an average of 28 binary subtractions. This can be implemented in
hardware directly with only very few transistors involved. Also software algorithms can be
very efficient.

All of the CRC formulas you will encounter are simply checksum algorithms based
on modulo-2 binary division where we ignore carry bits and in effect the subtraction will be
equal to an exclusive or operation. Though some differences exist in the specifics across
different CRC formulas, the basic mathematical process is always the same:

o The message bits are appended with ¢ zero bits; this augmented message is the
dividend
o Apredetermined c+1-bit binary sequence, called the generator polynomial, is the
divisor
o The checksum isthe c-bit remainder that results from the division operation
Table 1 lists some of the most commonly used generator polynomials for 16- and 32-bit
CRCs. Remember that the width of the divisor is always one bit wider than the remainder.

So, for example, you’d use a 17-bit generator polynomial whenever a 16-bit checksum is

required.
Table 1: International Standard CRC Polynomials
CRC-CCITT CRC-16 CRC-32
Checksum) . .
16 bits 16 bits 32 bits
Width
Generator
ool » 10001000000100001 | 11000000000000101 | 100000100110000010001110110110111
olynomia

Error detectionwith CRC
Consider a message represented by the polynomial M(x)

DEPARTMENT OF Al & DS,AITM Page no 23

Computer Network Laboratory (IPCC) BCS502 2024-2025

Consider a generating polynomial G(x)
This is used to generate a CRC = C(x) to be appended to M(x).
Note this G(x) is prime.
Steps:
1. Multiply M(x) by highest power in G(x). i.e. Add So much zeros to M(x).
2. Divide the result by G(x). The remainder = C(x).
Special case: This won't work if bitstring =all zeros. We don't allow such an
M(x).But M(x) bitstring = 1 will work, for example. Can divide 1101 into 1000.
3. If: xdivygives remainder ¢
that means: x=ny+c
Hence (x-C)=ny
(x-c) div y gives remainder 0
Here (x-C) = (X+c)
Hence (x+c) div y gives remainder O
4. Transmit: T(x) = M(x) + C(x)
5. Receiver end: Receive T(x). Divide by G(x), should have remainder 0.

Note if G(x) has order n - highest power is X",
then G(x) will cover (n+1) bits

and the remainder will cover n bits.

i.e. Add n bits (Zeros) to message.

Some CRC polynomials that are actually used

Some CRC polynomials
« CRC-8:
XB+X2+X+1
o Used in: 802.16 (along with error correction).
o CRC-CCITT:
X16+X12+X5+1
o Usedin: HDLC, SDLC, PPP default
« IBM-CRC-16 (ANSI):

DEPARTMENT OF Al & DS,AITM Page no 24

Computer Network Laboratory (IPCC) BCS502

2024-2025

802.3:

X326 4x 234 %22 L6y 124y 1Ly 10 oy BT aByshin2 vt

o Used in: Ethernet, PPP rootion

Source Code:

import java.util.*;
class crc

{

void div(int a[],int k)

{ int gp[]={1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1};
int count=0;
for(int i=0;i<k;i++)
i{f(a[i]==gp[0])
for(int j=i;j<17+i;j++)
a[jl=ali]"“gp[count++];
count=0;
¥
}
¥

public static void main(String argsl[])

{

int a[]=new int[100];
int b[]=new int[100];
int len,k;

crc ob=new crc();

System.out.printin("Enter the length of Data Frame:");

Scanner sc=new Scanner(System.in);
len=sc.nextInt();

int flag=0;

System.out.printIn("Enter the Message:");
for(int i=0;i<len;i++)

{ a[i]=sc.nextint();

for(int i=0;i<16;i++)

{ a[len++]=0;

}

k=len-16;

for(int i=0;i<len;i++)

{ b[i]=a[i];

}

ob.div(a,k);
for(inti=0;i<len;i++)
a[i]=a[i]"o[i];

System.out.printin("Data to be transmitted: ");

for(int i=0;i<len;i++)

DEPARTMENT OF Al & DS,AITM

Page no 25

Computer Network Laboratory (IPCC) BCS502

2024-2025

{

¥
System.out.printin();

System.out.printin("Enter the Reveived Data: "),
for(int i=0;i<len;i++)

{

System.out.print(a[i]+" ");

a[i]=sc.nextint();
¥
ob.div(a, k);

for(int i=0;i<len;i++)

if(afi]'=0)
{
flag=1;
break;
¥
}
if(flag==1)
System.out.printin(error in data™);
else
System.out.printin(*no error");
¥
¥
Output:

Enter the length of Data Frame: 4

Enter the Message: 1011

Data to be transmitted: 10111011000101101011
Enter the Reveived Data: 10111011000001101011
ERROR in Recived Data

*hkhkhkkhkkhkhkkkhhkkhkhkkhkkihkihhkihhkkikkikkihkkhkkhkkikkhhkihkihkkihkhhkhhkihkihihihiiiikx

DEPARTMENT OF Al & DS,AITM

Page no 26

Computer Network Laboratory (IPCC) BCS502 2024-2025

Experiment No: 5 Date:

Develop a program to implement a sliding windowprotocol in the data link layer.

Source Code:

#include int main()

{

int w,i,f,frames[50];

printf("Enter window size: ");

scanf("%d",&w);

printf("\nEnter number of frames to transmit: ");

scanf("%d",&f);

printf("\nEnter %d frames: " ,f);

for(i=1;i<=f;i++) scanf("%d",&frames[i]);

printf("\nWith sliding window protocol the frames will be sent in the following manner assuming no corruption of
frames)\n\n");

printf("After sending %d frames at each stage sender waits for acknowledgement sent by the receiver\n\n",w);
for(i=1;i<=f;i++) {

if(i%w==0) { printf("%d\n",frames[i]);

printf("Acknowledgement of above frames sent is received by sender\n\n®);

}

else printf("%d " framesJi]);

}

if(f%w!=0) printf(*\nAcknowledgement of above frames sent is received by sender\n™); return 0; }

@ “C:\Users\NIHAL\Downloads\ X

Enter window size: 3

Enter number of frames to transmit: 5

Enter 5 frames: 12 5 89 4 6

With sliding window protocol the frames will be sent in the following manner assuming no corruption of frames)

After sending 3 frames at each stage sender waits for acknowledgement sent by the receiver

12 5 89
Acknowledgement of above frames sent is received by sender

46
Acknowledgement of above frames sent is receivedby sender

Process returned 0 (0x0) execution time : 12.698 s
Press any key to continue.

== Q Search

DEPARTMENT OF Al & DS,AITM Page no 27

Computer Network Laboratory (IPCC) BCS502 2024-2025

Experiment No: 6 Date:

Bellman-ford Algorithm

Aim: Write a program to find the shortest path between vertices using bellman-ford
algorithm.

Distance Vector Algorithm is a decentralized routing algorithm that requires that each
router simply inform its neighbors of its routing table. For each network path, the receiving
routers pick the neighbor advertising the lowest cost, then add this entry into its routing table
for re-advertisement. To find the shortest path, Distance Vector Algorithm is based on one of
two basic algorithms: the Bellman-Ford and the Dijkstra algorithms.

Routers that use this algorithm have to maintain the distance tables (which is a one-
dimension array -- "a vector"), which tell the distances and shortest path to sending packets to
each node in the network. The information in the distance table is always upd by exchanging
information with the neighboring nodes. The number of data in the table equals to that of all
nodes in networks (excluded itself). The columns of table represent the directly attached
neighbors whereas the rows represent all destinations in the network. Each data contains the
path for sending packets to each destination in the network and distance/or time to transmit
on that path (we call this as "cost™). The measurements in this algorithm are the number of
hops, latency, the number of outgoing packets, etc.\

The Bellman—Ford algorithm is an algorithm that computes shortest paths from a single
source vertex to all of the other vertices in a weighted digraph. It is slower than Dijkstra's
algorithm for the same problem, but more versatile, as it is capable of handling graphs in which
some of the edge weights are negative numbers. Negative edge weights are found in various
applications of graphs, hence the usefulness of this algorithm. If a graph contains a "negative
cycle” (i.e. a cycle whose edges sum to a negative value) that is reachable from the source, then
there is no cheapest path: any path that has a point on the negative cycle can be made cheaper by
one more walk around the negative cycle. In such a case, the Bellman—Ford algorithm can detect
negative cycles and report their existence
Implementation Algorithm:

1. send my routing table to all my neighbors whenever my link table changes

2. when | get a routing table from a neighbor on port P with link metric M:

a. add L to each of the neighbor's metrics
h. foreachentry (D, P', M") in the updated neighbor's table:
i. ifl1do not have an entry for D, add (D, P, M') to my routing table

DEPARTMENT OF Al & DS,AITM Page no 28

Computer Network Laboratory (IPCC) BCS502

2024-2025

i. if I have an entry for D with metric M", add (D, P, M’) to my routing

table if M' < M"

3. ifmy routing table has changed, send all the new entries to all my neighbors.

Source Code:
import java.util.Scanner;
public class BellmanFord
{ private int D[];
private int num_ver;
public static final int MAX_VALUE =999;
public BellmanFord(int n)
{ this.n=n;
D = new int[n+1];

public void shortest(int s,int A[][])
{ for (int i=1;i<=n;i++)
{ D[i]=MAX_VALUE;
} D[s] = 0;
for(int k=1;k<=n-1;k++)
{ for(int i=1;i<=n;i++)
{ for(int j=1;j<=n;j++)
{ if(A[I[j]'=MAX_VALUE)
{ fOL>DO+ALG])
DII=DLI+ALLI;

}
}
for(int i=1;i<=n;i++)
{ for(int j=1;j<=n;j++)
{ if(A[I][j]'=MAX_VALUE)
{ ?‘(DU]>D[i]+A[i][i])

System.out.printin("The Graph contains negative egde cycle");
return;

} }
}
}
for(int i=1;i<=n;i++)
{

System.out.printin("Distance of source " +s+ "to"+1i+"is" + D[i]);

¥

}
public static void main(String[] args)
{ int n=0,s;

Scanner sc = new Scanner(System.in);
System.out.printIn("Enter the number of vertices™);
n = sc.nextint();

DEPARTMENT OF Al & DS,AITM

Page no 29

Computer Network Laboratory (IPCC) BCS502

2024-2025

int A[][] = new int[n+1][n+1];

System.out.printIn("Enter the Weighted matrix");

for(int i=1;i<=n;i++)
{ for(int j=1;j<=n;j++)
{ Ali][j]=sc.nextInt();

if(i==))

{ A0
continue;

}

if(ALi][i]==0)

{ A[i][[I=MAX_VALUE;

¥
¥
¥

System.out.printIn("Enter the source vertex");

s=sc.nextint();
BellmanFord b = new BellmanFord(n);

b.shortest(s,A);
sc.close();
}
}
Output:
Enter the number of vertices
4
Enter the adjacency matrix
0 5 0 0
5 0 3 4
0 3 0 2
0 4 2 0
Enter the source vertex
2

Distance of source 2to 1is5
Distance of source 2to 2is 0
Distance of source 2to 3is 3
Distance of source 2to 4 is 4

DEPARTMENT OF Al & DS,AITM

Page no 30

Computer Network Laboratory (IPCC) BCS502 2024-2025

Experiment No: 7 Date:
Client-server using TCP/IP sockets

Aim: Using TCP/IP Sockets, write a client-server program to make client sending the file

name and the server to send back the contents of the requested file if present. Implement the

above program using as message queues or FIFOs as IPC channels.

Socket is an interface which enables the client and the server to communicate and pass on
information from one another. Sockets provide the communication mechanism between two
computers using TCP. A client program creates a socket on its end of the communication and
attempts to connect that socket to a server. When the connection is made, the server creates a
socket object on its end of the communication. The client and the server can now communicate
by writing to and reading from the socket.

Source Code:

TCP Client

import java.io.BufferedReader;
import java.io.DatalnputStream;
import java.io.DataOutputStream;
import java.io.EOFException;
import java.io.File;

import java.io.FileOutputStream;
import java.io.InputStreamReader;
import java.net.Socket;

import java.util.Scanner;

class Client

{

public static void main(String args[])throws Exception
{

String address =""";
Scanner sc=new Scanner(System.in);

System.out.printin("Enter Server Address: ");

address=sc.nextLine();

/[create the socket on port 5000

Socket s=new Socket(address,5000);

DatalnputStream din=new DatalnputStream(s.getinputStream());
DataOutputStream dout=new DataOutputStream(s.getOutputStream());
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
System.out.printIn(*Send Get to start...");

String str="",filename="",

try

while(!str.equals(“start"))
str=br.readLine();
dout.writeUTF(str);
dout.flush();
filename=din.readUTF();

DEPARTMENT OF Al & DS,AITM Page no 31

Computer Network Laboratory (IPCC) BCS502

2024-2025

System.out.printin("Receving file: "+filename);
filename="client"+filename;

System.out.printin("Saving as file: "+filename);

long sz=Long.parseLong(din.readUTF());
System.out.println ("File Size: "+(sz/(1024*1024))+" MB");
byte b[]=new byte [1024];

System.out.printIn("Receving file..");

FileOutputStream fos=new FileOutputStream(new File(filename),true);
long bytesRead;

do

{

bytesRead = din.read(b, 0, b.length);

fos.write(b,0,b.length);

}

while(!(bytesRead<1024));
System.out.printin("Comleted");
fos.close();

dout.close();

s.close();

}
catch(EOFEXxception €)

{
//do nothing

}

}

}

TCP Server

import java.io.DatalnputStream;
import java.io.DataOutputStream;
import java.io.File;

import java.io.FilelnputStream;
import java.net.ServerSocket;
import java.net.Socket;

import java.util.Scanner;

class Server

{

public static void main(String args[])throws Exception

{

String filename;

System.out.printIn("Enter File Name: ");

Scanner sc=new Scanner(System.in);

filename=sc.nextLine();

sc.close();

while(true)

{

/lcreate server socket on port 5000

ServerSocket ss=new ServerSocket(5000);

System.out.println (*Waiting for request”);

Socket s=ss.accept();

System.out.printin ("Connected With "+s.getInetAddress().toString());
DatalnputStream din=new DatalnputStream(s.getIinputStream());
DataOutputStream dout=new DataOutputStream(s.getOutputStream());

DEPARTMENT OF Al & DS,AITM

Page no 32

Computer Network Laboratory (IPCC) BCS502 2024-2025

try
{

String str=""",
str=din.readUTF();
System.out.printIn("SendGet ...Ok™);
if(Istr.equals("stop™))
{ System.out.printin("Sending File: "+filename);
dout.writeUTF(filename);

dout.flush();

File f=new File(filename);

FilelnputStream fin=new FilelnputStream(f);
long sz=(int) f.length();

byte b[]=new byte [1024];

int read,;

dout.writeUTF(Long.toString(sz));
dout.flush();

System.out.printin ("Size: "+sz);

System.out.println ("Buf size: "+ss.getReceiveBufferSize()); while((read = fin.read(b)) !=-1)

dout.write(b, 0, read); dout.flush();

}

fin.close();

System.out.printIn(*..ok™); dout.flush();

}

dout.writeUTF("'stop™);

System.out.printIn("Send Complete™); dout.flush();

catch(Exception e)

e.printStackTrace();
System.out.printIn("An error occured");
}

din.close();

s.close();

ss.close();

¥
¥

}
Output: At server side:

L ST FHEYOHBTRTH GG PSRN
File Eetit View Terminal Help

[root@laecalbont I# jmvac nerver.iava 1=

[rootmliaocalnost T4 Java server

Enter Fille Name:

2-temple. ipg

walting for reguest

Ced With Z127.0.0.1
S <

DEPARTMENT OF Al & DS,AITM Page no 33

Computer Network Laboratory (IPCC) BCS502 2024-2025

At Client Side:

DEPARTMENT OF Al & DS ,AITM Page no 34

Computer Network Laboratory (IPCC) BCS502 2024-2025

Experiment No: 8 Date:

Client-Server Communication

Aim: Write a program on datagram socket for client/server to display the messages on client

side, typed at the server side.

A datagram socket is the one for sending or receiving point for a packet delivery service.
Each packet sent or received on a datagram socket is individually addressed and routed. Multiple
packets sent from one machine to another may be routed differently, and may arrive in any order.

Source Code:
UDP Client
import java.io.*;
import java.net.*;
public class UDPC
{

public static void main(String[] args)

{
DatagramSocket skt; try

{

skt=new DatagramSocket();

String msg= "text message ";

byte[] b = msg.getBytes();

InetAddress host=InetAddress.getByName("127.0.0.1");

int serverSocket=6788;

DatagramPacket request =new DatagramPacket (b,b.length,host,serverSocket);
skt.send(request);

byte[] buffer =new byte[1000];

DatagramPacket reply= new DatagramPacket(buffer,buffer.length);
skt.receive(reply);

System.out.printIn("client received:" +new String(reply.getData()));
skt.close();

catch(Exception ex)
{
}
}

}
UDP Server

import java.io.*;

import java.net.*;

public class UDPS

{

public static void main(String[] args)
{

DatagramSocket skt=null;

try

{

DEPARTMENT OF Al & DS,AITM Page no 35

Computer Network Laboratory (IPCC) BCS502 2024-2025

skt=new DatagramSocket(6788);
byte[] buffer = new byte[1000];
while(true)

{

DatagramPacket request = new DatagramPacket(buffer,buffer.length);

skt.receive(request);

String[] message = (new String(request.getData())).split(" ");

byte[] sendMsg= (message[1]+ " server processed").getBytes();

DatagramPacket reply = new DatagramPacket(sendMsg,sendMsg.length,request.getAddress
(),request.getPort());

skt.send(reply);

}

¥

catch(Exception ex)

{
}
}
}
Output:

AT SERVER SIDE
[root@localhost]# cc prg6s.c
[root@localhost J# ./a.out
SERVER online!
CLIENT online!
Waiting for request. ..SERVER: /Test.txt found!
Transfering the contents...
SERVER transfer Completed!
SERVER transfer Completed!

Output:
AT CLIENT SIDE

[root@localhost]# cc prg6c.c
[root@localhostj# ./a.out
Waiting for SERVER...
SERVER online!
CLIENT: Enter the path: /Test.txt
Wating for reply...
File recieved! Displaying the contents:
Sockets are a mechanism for exchanging data between processes. These processes can

either be on the same machine, or on different machines connected via a network. Once a

DEPARTMENT OF Al & DS,AITM Page no 36

Computer Network Laboratory (IPCC) BCS502 2024-2025

socket connection is established, data can be sent in both directions until one of the endpoints
closes the connection.

I needed to use sockets for a project | was working on, so | developed and refined a few
C++ classes to encapsulate the raw socket API calls. Generally, the application requesting the
data is called the client, and the application servicing the request is called the server. | created

two primary classes, C ZlientSocket and ServerSocket, that the client and server could use to
exchange data.

Output:

At Server Side:

rootalocalhost: -

Flle Edit View Terminal Help

[root@localhost ~]1# javac UDPS. java
If]root@tocalhost ~]|# java UDPS

At Client Side:

Tootmlocalnost: —

File Edit View Terminal Help

[root@localhost ~|# javac UDPC. java
[root@localhost ~|# java UDPC

client recelved:message server processed
[root@localhost ~|#

DEPARTMENT OF Al & DS ,AITM Page no 37

Computer Network Laboratory (IPCC) BCS502 2024-2025

Experiment No: 9 Date:
RSA Algorithm to Encrypt and Decrypt the Data
Aim: Program for Simple RSA Algorithm to encrypt and decrypt the data

The RSA algorithm can be used for both public key encryption and digital signatures.
Its security is based on the difficulty of factoring large integers.

The RSA algorithm's efficiency requires a fast method for performing the modular
exponentiation operation. A less efficient, conventional method includes raising a number
(the input) to a power (the secret or public key of the algorithm, denoted e and d,
respectively) and taking the remainder of the division with N. A straight-forward
implementation performs these two steps of the operation sequentially: first, raise it to the
power and second, apply modulo.

Avery simple example of RSA encryption
This is an extremely simple example using numbers you can work out on a pocket
calculator (those of you over the age of 35 can probably even do it by hand on paper).
1. Selectprimesp =11,9=3.
2.n=pg=113=33
phi = (p-1)(g-1)=10.2 =20
3. Choose e=3

Check gcd(e, p-1) = gcd(3, 10) =1 (i.e. 3 and 10 have no common factors except 1),

and check gcd(e, g-1) =gcd(3,2) =1

therefore gcd(e, phi) = ged(e, (p-1)(g-1)) = gcd(3, 20) =1

4. Compute d such that ed =1 (mod phi)

i.e. compute d =e™! mod phi =3"* mod 20

i.e. find a value for d such that phi divides (ed-1)

i.e. find d such that 20 divides 3d-1.

testing (d=1, 2, ...) givesd =7

Check: ed-1=3.7 - 1 = 20, which is divisible by phi.

5. Simple Public key = (n, e) =

(33, 3) Private key =(n, d) =

(33, 7).

This is actually the smallest possible value for the modulus n for which the RSA
algorithm works.

Now say we want to encrypt the message m =7,
¢c=m" mod n=7" mod 33 = 343 mod 33 = 13.
DEPARTMENT OF Al & DS, AITM Page no 38

Computer Network Laboratory (IPCC) BCS502 2024-2025

Hence the ciphertext ¢ = 13.

DEPARTMENT OF Al & DS,AITM Page no 39

Computer Network Laboratory (IPCC) BCS502 2024-2025

To check decryption we compute
m'=c¢"¥mod n=13"mod 33 =7.
Note that we don't have to calculate the full value of 13 to the power 7 here. We can
make use of the fact that a = bc mod n = (b mod n).(c mod n) mod n so we can break down a
potentially large number into its components and combine the results of easier, smaller
calculations to calculate the final value.
One way of calculating m' is as follows:-
m' = 13" mod 33 = 13"®"3*) mod 33 =13".13".13 mod 33
= (13" mod 33).(13™ mod 33).(13 mod 33) mod 33
=(2197 mod 33).(2197 mod 33).(13 mod 33) mod 33
=19.19.13 mod 33 = 4693 mod 33
=T.
Now if we calculate the cipher text c for all the possible values of m (0 to 32), we get
m012345678910111213141516
c01827312618131731011121959 4

m 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
€29242814212223301620157262532

Note that all 33 values of m (0 to 32) map to a unique code c in the same range in a
sort of random manner. In this case we have nine values of m that map to the same value of ¢
- these are known as unconcealed messages. m = 0 and 1 will always do this for any N, no
matter how large. But in practice, higher values shouldn't be a problem when we use large
values for N.

If we wanted to use this system to keep secrets, we could let A=2, B=3, ..., Z=27. (We
specifically avoid 0 and 1 here for the reason given above). Thus the plaintext message
"HELLOWORLD" would be represented by the set of integers m1, m2, ...
{9,6,13,13,16,24,16,19,13,5}

Using our table above, we obtain ciphertext integers c1, c2, ...
{3,18,19,19,4,30,4,28,19,26}

Note that this example is no more secure than using a simple Caesar substitution
cipher, but it serves to illustrate a simple example of the mechanics of RSA encryption.

Remember that calculating m”e mod n is easy, but calculating the inverse ¢-e mod n

is very difficult, well, for large n's anyway. However, if we can factor n into its prime factors

DEPARTMENT OF Al & DS,AITM Page no 40

Computer Network Laboratory (IPCC) BCS502 2024-2025

p and g, the solution becomes easy again, even for large n's. Obviously, if we can get hold of
the secret exponent d, the solution is easy, too.
Key Generation Algorithm
1. Generate two large random primes, p and g, of approximately equal size such that
their product n = pq is of the required bit length, e.g. 1024 bits. [See note 1].
2. Compute n=pgand (¢) phi =(p-1)(g-1).
3. Choose aninteger e, 1 <e < phi, such that gcd(e, phi) = 1. [See note 2].
4. Compute the secret exponent d, 1 <d < phi, such that
ed =1 (mod phi). [See note 3].
5. The public key is (n, €) and the private key is (n, d). The values of p, g, and phi
should also be kept secret.
o nisknown asthe modulus.
o e isknown as the public exponent or encryption exponent.
« disknown as the secret exponent or decryption exponent.
Encryption
Sender A does the following:-
1. Obtains the recipient B's public key (n, e).
2. Represents the plaintext message as a positive integer m [see note 4].
3. Computes the ciphertext ¢ =m"™ mod n.
4. Sends the ciphertext c to B.
Decryption
Recipient B does the following:-
1. Uses his private key (n, d) to compute m = c¢"® mod n.

2. Extracts the plaintext from the integer representative m.

Source Code:

import java.util.*;

import java.io.*;

public class rsa

{ static int gcd(int m,int n)
{ while(n!=0)

{ int r=m%n;
m=n;
n=r;
return m;

DEPARTMENT OF Al & DS,AITM Page no 41

Computer Network Laboratory (IPCC) BCS502

2024-2025

public static void main(String args[])

{

int p=0,9=0,n=0,e=0,d=0,phi=0;
int nummes[]=new int[100];
int encrypted[]=new int[100];
int decrypted[]=new int[100];

int i=0,j=0,nofelem=0;
Scanner sc=new Scanner(System.in);
String message ;

System.out.printin("Enter the Message tobe encrypted:");

message= sc.nextLine();

System.out.printin("Enter value of p and g\n");
p=sc.nextint();

g=sc.nextint();

n=p*q;

phi=(p-1)*(9-1);

for(i=2;i<phi;i++)

if(gcd(i,phi)==1) break;

e=i;

for(i=2;i<phi;i++)
if((e*i-1)%phi==0)

break;
d=i;
for(i=0;i<message.length();i++)
{

char ¢ = message.charAt(i);
int a =(int)c;
nummes[i]=c-96;
¥

nofelem=message.length();
for(i=0;i<nofelem;i++)

{

encrypted[i]=1,;

for(j=0;j<e;j++)

encrypted[i] =(encrypted[i]*nummes[i])%n;
}

System.out.printin("\n Encrypted message\n");
for(i=0;i<nofelem;i++)
{
System.out.print(encrypted[i]);
System.out.print((char)(encrypted[i]+96));
¥
for(i=0;i<nofelem;i++)
{ decrypted[i]=1,;
for(j=0;j<d;j++)

DEPARTMENT OF Al & DS,AITM

Page no 42

Computer Network Laboratory (IPCC) BCS502 2024-2025

decrypted[i]=(decrypted[i]*encrypted[i])%n;
}

System.out.printin("\n Decrypted message\n ");
for(i=0;i<nofelem;i++)
System.out.print((char)(decrypted[i]+96));
return;

¥
¥

#**

RESULT

Enter the text:

hello

Enter the value of P and Q:

5

7

Encrypted Textis:8h10j17g17qg150
Decrypted Text is: hello

DEPARTMENT OF Al & DS,AITM Page no 43

Computer Network Laboratory (IPCC) BCS502 2024-2025

Experiment No: 10 Date:
Congestion Control Using Leaky Bucket Algorithm

Aim: Program for Congestion control using Leaky Bucket Algorithm

The main concept of the leaky bucket algorithm is that the output data flow remains
constant despite the variant input traffic, such as the water flow in a bucket with a small hole
at the bottom. In case the bucket contains water (or packets) then the output flow follows a
constant rate, while if the bucket is full any additional load will be lost because of spillover.
In a similar way if the bucket is empty the output will be zero.
From network perspective, leaky bucket consists of a finite queue (bucket) where all the
incoming packets are stored in case there is space in the queue, otherwise the packets are
discarded. In order to regulate the output flow, leaky bucket transmits one packet from the
queue in a fixed time (e.g. at every clock tick). In the following figure we can notice the
main rationale of leaky bucket algorithm, for both the two approaches (e.g. leaky bucket with

water (a) and with packets (b)).

Faucet \ Host
Computer

g Packet
Loaky " i Unrequlated Flows =
buckst ~=| f
e Watet { The Bucket Holds
i = packets
—_— Interface Containing)
the leaky bucket e 0
Watar drips out of the
howo at a constant e .
(a) A leaky bucket with water @

Regulated Flow
Netm

(b) A leaky bucket with packets

Figure 2.4 - The leaky bucket traffic shaping algorithm
While leaky bucket eliminates completely bursty traffic by regulating the incoming
data flow its main drawback is that it drops packets if the bucket is full. Also, it doesn’t take
into account the idle process of the sender which means that if the host doesn’t transmit data

for some time the bucket becomes empty without permitting the transmission of any packet.

DEPARTMENT OF Al & DS,AITM Page no 44

Computer Network Laboratory (IPCC) BCS502

2024-2025

Implementation Algorithm:

Steps:

Read The Data For Packets
Read The Queue Size
Divide the Data into Packets

A w0 e

(input_packet).
5. wilile((Clock++<5*total packets)and
(out_packets< total_paclets))
a. if (clock == input_packet)
i. insertinto Queue
b. if(clock%5==0)

i. Remove paclet from Queue

6. End

Source Code:

import java.util.*;
public class leaky

{

static int min(int x,int y)

{

if(x<y)

return x;

else

return'y;

¥

public static void main(String[] args)
int drop=0,mini,nsec,cap,count=0,i,process;
int inp[]=new int[25];
Scanner sc=new Scanner(System.in);
System.out.printin("Enter The Bucket Size\n");
cap= sc.nextInt();
System.out.printIn("Enter The Operation Rate\n");
process= sc.nextInt();
System.out.printin("Enter The No. Of Seconds You Want To Stimulate\n™);
nsec=sc.nextint();
for(i=0;i<nsec;i++)

sec™);

{ System.out.print("Enter The Size Of The Packet Entering At "+ i+1+"

inp[i] = sc.nextInt();

DEPARTMENT OF Al & DS,AITM

Assign the random Propagation delays for each packets to input into the bucket

Page no 45

Computer Network Laboratory (IPCC) BCS502

2024-2025

Packet Dropped|\n");
/ISystem.out.printIn(*

A,

}

System.out.printin("\nSecond | Packet Recieved | Packet Sent | Packet Left |

for(i=0;i<nsec;i++)

{

count+=inp[i];

if(count>cap)

{ drop=count-cap;
count=cap;

¥

System.out.print(i+1);
System.out.print("\t\t"+inp[i]);
mini=min(count,process);
System.out.print("\t\t"+mini);
count=count-mini;
System.out.print("\t\t"+count);
System.out.print("\t\t"+drop);
drop=0;

System.out.printin();

for(;count!=0;i++)

{

if(count>cap)

{

drop=count-cap;

count=cap;

}

System.out.print(i+1);
System.out.print("\t\t0");
mini=min(count,process);
System.out.print("\t\t"+mini);
count=count-mini;
System.out.print("\t\t"+count);
System.out.print("\t\t"+drop);
System.out.printin();

ks
¥

S

Enter the Bucket Size 5
Enter the Operation Rate 2
Enter The No. Of Seconds You Want To Stimulate

3

DEPARTMENT OF Al & DS,AITM

Page no 46

Computer Network Laboratory (IPCC) BCS502 2024-2025

Enter the Size of the Packet Entering At 1 sec 5
Enter the Size of the Packet Entering At 1 sec 4
Enter the Size of the Packet Entering At 1 sec3

Second | Packet Received | Packet Sent |Packet Left | Packet Dropped|

O wNPE-
OO W~ o
P NDNDNDN
OFr W ww
OOk, N O

DEPARTMENT OF Al & DS,AITM Page no 47

Computer Network Laboratory (IPCC) BCS502 2024-2025

VIVA QUESTIONS

What are functions of different layers?

Differentiate between TCP/IP Layers and OSI Layers
Why header is required?

What is the use of adding header and trailer to frames?
What is encapsulation?

Why fragmentation requires?

What is MTU?

Which layer imposes MTU?

Differentiate between flow control and congestion control.

© o N o g B~ ow DR

[EEN
[an]

. Differentiate between Point-to-Point Connection and End-to-End connections.

[EEN
[EEN

. What are protocols running in different layers?
. What is Protocol Stack?
. Differentiate between TCP and UDP.

= = e
M~ W

Differentiate between Connectionless and connection oriented connection.

[EEN
(8]

. Why frame sorting is required?

[EEN
(o))

. What is meant by subnet?

. What is meant by Gateway?
. What isan IP address?

. What is MAC address?

N 2 e e
O © o

. Why IP address is required when we have MAC address?

N
(=Y

. What is meant by port?

N
N

. What are ephemerical port number and well known port numbers?
. What is a socket?

N N
~ w

What are the parameters of socket()?

N
(2]

. Describe bind(), listen(), accept(),connect(), send() and recv().

N
D

. What are system calls? Mention few of them.
. What is IPC? Name three techniques.

N N
oo

. Explain mkfifo(), open(), close() with parameters.

N
(o]

. What is meant by file descriptor?

w
o

. What is meant by traffic shaping?

w
-

. How do you classify congestion control algorithms?

w
N

. Differentiate between Leaky bucket and Token bucket.
33. How do you implement Leaky bucket?

DEPARTMENT OF Al & DS,AITM Page no 48

Computer Network Laboratory (IPCC) BCS502 2024-2025

34. How do you generate busty traffic?

35. What is the polynomial used in CRC-CCITT?

36. What are the other error detection algorithms?

37. What is difference between CRC and Hamming code?
38. Why Hamming code is called 7,4 code?

39. What is odd parity and even parity?

40. What is meant by syndrome?

41. What is generator matrix?

42. What is spanning tree?

43. Differentiate between Prim’s and Kruskal’s algorithm.
44. What are Routing algorithms?

45. How do you classify routing algorithms? Give examples for each.
46. What are drawbacks in distance vector algorithm?

47. How routers update distances to each of its neighbor?
48. How do you overcome count to infinity problem?

49. What is cryptography?

50. How do you classify cryptographic algorithms?

51. What is public key?

52. What is private key?

53. What are key, ciphertext and plaintext?

54. What is simulation?

55. What are advantages of simulation?

56. Differentiate between Simulation and Emulation.

57. What is meant by router?

58. What is meant by bridge?

59. is meant by switch?

60. What is meant by hub?

61. What Differentiate between route, bridge, switch and hub.
62. What is ping and telnet?

63. What is FTP?

64. What is BER?

65. What is meant by congestion window?

66. What is BSS?

67. What is incoming throughput and outgoing throughput?

DEPARTMENT OF Al & DS,AITM Page no 49

Computer Network Laboratory (IPCC) BCS502 2024-2025

68.
69.
70.
71.
2.
73.
74.
75.
76.
7.

What is collision?

How do you generate multiple traffics across different sender-receiver pairs?
How do you setup Ethernet LAN?

What is meant by mobile host?

What is meant by NCTUns?

What are dispatcher, coordinator and nctunsclient?

Name few other Network simulators

Differentiate between logical and physical address.

Which address gets affected if a system moves from one place to another place?
What is ICMP? What are uses of ICMP? Name few.

Website: http://kcsantoshbiet.wordpress.com

DEPARTMENT OF Al & DS,AITM Page no 50

http://kcsantoshbiet.wordpress.com/

	DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE, AITM BELAGAVI
	(2024–2025)
	Program Educational Objectives (PEOs)
	Program Outcomes (POs)

	DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

	BASICS OF NS2
	LAB PROGRAMS
	-:Laboratory Programs:-
	[root@localhost ~]# gedit lab1.tcl
	[root@localhost ~]# gedit lab1.awk
	[root@localhost~]# ns lab1.tcl
	[root@localhost~]# awk –f lab1.awk lab1.tr
	[root@localhost~]# gedit lab1.tr
	[root@localhost ~]# gedit lab2.tcl
	[root@localhost ~]# gedit lab2.awk
	[root@localhost~]# ns lab2.tcl
	[root@localhost~]# awk –f lab2.awk lab2.tr
	[root@localhost~]# gedit lab2.tr
	[root@localhost ~]# gedit lab3.tcl
	[root@localhost ~]# gedit lab3.awk
	[root@localhost~]# ns lab3.tcl

