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1 Develop a program to create histograms for all numerical features and 1

analyze the distribution of each feature. Generate box plots for all
numerical features and identify any outliers. Use California Housing
dataset.

2 Develop a program to Compute the correlation matrix to understand the 3
relationships between pairs of features. Visualize the correlation matrix
using a heatmap to know which variables have strong positive/negative
correlations. Create a pair plot to visualize pairwise relationships
between features. Use California Housing dataset.

3 Develop a program to implement Principal Component Analysis (PCA) 6
for reducing the dimensionality of the Iris dataset from 4 features to 2.
4 For a given set of training data examples stored in a .CSV file, 7

implement and demonstrate the Find-S algorithm to output a description
of the set of all hypotheses consistent with the training examples.

5 Develop a program to implement k-Nearest Neighbour algorithm to 8
classify the randomly generated 100 values of x in the range of [0,1].
Perform the following based on dataset generated. a. Label the first 50
points {x1,...... ,x501} as follows: if (x1 < 0.5), then xi € Classl1, else xi €
Class1 b. Classify the remaining points, x51,...... ,x100 using KNN.
Perform this for k=1,2,3,4,5,20,30

6 Implement the non-parametric Locally Weighted Regression algorithm 10
in order to fit data points. Select appropriate data set for your
experiment and draw graphs

7 Develop a program to demonstrate the working of Linear Regression 12
and Polynomial Regression. Use Boston Housing Dataset for Linear
Regression and Auto MPG Dataset (for vehicle fuel efficiency
prediction) for Polynomial Regression.

8 Develop a program to demonstrate the working of the decision tree 15
algorithm. Use Breast Cancer Data set for building the decision tree and
apply this knowledge to classify a new sample.

9 Develop a program to implement the Naive Bayesian classifier 17
considering Olivetti Face Data set for training. Compute the accuracy of
the classifier, considering a few test data sets.

10 | Develop a program to implement k-means clustering using Wisconsin 20
Breast Cancer data set and visualize the clustering result.
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Experiment 1. Develop a program to create histograms for all numerical features and analyze
the distribution of each feature. Generate box plots for all numerical features and identify any
outliers. Use California Housing dataset.

Program:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import fetch california housing
data = fetch_california_housing(as frame=True)
df = data.frame
print(df.head())
numerical features = df.select dtypes(include=['float64', 'int64']).columns.tolist()
print(fNumerical features: {numerical features}')
plt.figure(figsize=(20, 15))
for 1, feature in enumerate(numerical features):
plt.subplot(3, 3,1+ 1)
sns.histplot(df feature], kde=True)
plt.title(fHistogram of {feature}")
plt.tight layout()
plt.show()
plt.figure(figsize=(20, 15))
for 1, feature in enumerate(numerical features):
plt.subplot(3, 3,1+ 1)
sns.boxplot(x=df] feature])
plt.title(f Box plot of {feature}")
plt.tight layout()

plt.show()
Output:
MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude 1\
8 8.3252 41.8 6.984127 1.823810 322.8 2.555556 37.88
1 8.3014 21.8 6.238137 8.971880 2401.8 2.109842 37.86
2 7.2574 52.9 8.288136 1.073446 496.8 2.802260 37.85
3 5.6431 52.8 5.817352 1.873059 558.0 2.547945 37.85
4 3.8462 52.8 6.281853 1.081081 565.8 2.181467 37.85

o o @

Longitude MedHouseVal

-122.23 4.526
-122.22 3.585
-122.24 3.521
-122.25 3.413
-122.25 3.422

Numerical features: ['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population’, 'AveOccup', 'Latitude', 'Longitude', 'MedHouseVal']
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Experiment 2. Develop a program to compute the correlation matrix to understand the
relationships between pairs of features. Visualize the correlation matrix using a heatmap to
know which variables have strong positive/negative correlations. Create a pair plot to visualize
pairwise relationships between features. Use California Housing dataset.

Program:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import fetch california_housing
data = fetch_california_housing(as frame=True)
df = data.frame
print("First few rows of the dataset:")
print(df.head())
corr_matrix = df.corr()
print("\nCorrelation matrix:")
print(corr_matrix)
plt.figure(figsize=(10, 8))
sns.heatmap(corr matrix, annot=True, cmap='coolwarm', fmt="2f", linewidths=0.5)
plt.title("Correlation Matrix Heatmap")
plt.show()
sns.pairplot(df)
plt.suptitle('Pairwise Relationships between Features', y=1.02)
plt.show()

Output:

Correlation Matrix Heatmap

Medinc -plelslelelels]-0.1190340.326895-0.0620400.004834 0.018766-0.079809-0.0151 76 A 1:1- vl
0.75

HouseAge —0.11903 0.153277-0.077747-0.2962440.013191 0.011173-0.1081970.105623
AveRooms -0.326895-0.153277 pRelelelelolo]{oR:E¥IPAR8-0.072213-0.0048520.106389-0.0275400.151948 - 0-50
AveBedrms —0.062040-0.07 7747 E-E¥-whNMelilsliles[s]-0.066197-0.006181 0.069721 0.013344-0.046701 -0.25

Population -0.004834-0.296244-0.072213-0.066197 pMelesls[s] 0.069863-0.108785 0.099773-0.024650

1.00

-0.00

AveOccup -0.018766 0.013191-0.004852-0.006181 0.069863 jMslelelolele] 0.002366 0.002476-0.023737
-—0.25

Latitude —-0.0798090.011173 0.106389 0.069721-0.108785 0.002366 jMelelelele]ol v B-PL TR -0. 144160
- —0.50
Longitude —0.0151760.108197-0.0275400.013344 0.099773 0.002476 PEPLEGEIMDDG]-0.045967

—0.75
MedHouseVal -RaE0FE10.105623 0.151948-0.046701-0.024650-0.023737-0.144160-0.04 596 7pMelalslsale ]y}

Medinc
HouseAge -
AveRooms -

AveBedrms -
Population -
AveOccup -

Latitude -
Longitude -
MedHouseVal
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First few rows of the dataset:

MedInc HouseAge AveRooms AveBedrms Population
@ 8.3252 41.8 6.984127 1.823810 322.9
1 8.3914 21.8 6.238137 8.971880 2491.8
2 7.2574 52.8 B.288136 1.873446 496.8
3 5.6431 52.8 5.817352 1.873859 558.8
4 3.8462 52.8 6.281853 1.881881 565.8
Longitude MedHouseVal
e -122.23 4.526
1 -122.22 3.585
2 -122.24 3.521
3 -122.25 3.413
bl -122.25 3.422
Correlation matrix:
MedInc HouseAge AveRooms AveBedrms
MedInc 1.006000 -0.115234 ©.326855 -0.062040
Houselge -8.119834 1.008000 -0.153277 -0.877747
AveRooms ©.326895 -9©.153277 1.808000 8.847621
AveBedrms -9.062040 -0.077747 ©.847621 1.e08800
Population 9.004534 -0.29%96244 -0.872213 -0.066197
Avelccup @.018766 ©.0131%1 -0.884852 -0.086181
Latitude -8.079809 06.011173 ©.186389 8.869721
Longitude -8.015176 -06.188197 -0.827540 8.013344
MedHouseVal ©.6880875 ©.105623 ©.151948 -0.846701
Latitude Longitude MedHouseVal
MedInc -@.879809 -0.815176 8.688075
Houselge 8.011173 -8.1088197 8.185623
AveRooms 0.1806389 -8.827540 8.1519438
AveBedrms 8.069721 2.913344 -8.046701
Population -@.188785 @.995%773 -8.024658
Avelccup 0.082366 B.002476 -8.823737
Latitude 1.006000 -8.924664 -8.1441680
Longitude -8.924664 1.008000 -8.0845967
MedHouseVal -0.144160 -0.045967 1.800000

AveOccup
2.555556
2.105842
2.802260
2.547945
2.181467

Population
8.004834
-8.296244
-8.872213
-8.866197
1.000000
8.069863
-8.108785
B.899773
-8.024650

Latitude
37 .88
37.86
37.85
37.85
37.85

AveOccup
.813766
.813191
.084852
.006181
.B69863
. 000000
.B082366
.B82476
-8.823737
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Experiment 3. Develop a program to implement Principal Component Analysis (PCA) for
reducing the dimensionality of the Iris dataset from 4 features to 2.

Program:

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

from sklearn.decomposition import PCA

data = load iris()

iris_df = pd.DataFrame(data.data, columns=data.feature names)

iris_df'species'] = pd.Categorical.from codes(data.target, data.target names)

pca =PCA(n_components=2)

principal components = pca.fit_transform(data.data)

pca_df = pd.DataFrame(data=principal components, columns=['"PC1', 'PC2'])

pca_df['species'] = iris_df]'species']

plt.figure(figsize=(8, 6))

colors = ['red', 'green', 'blue']

species = data.target names

for 1, color in enumerate(colors):
subset = pca_df[pca_df['species'] == species[i]]
plt.scatter(subset['PC1'], subset['PC2'], color=color, label=species[i])

plt.title('PCA of Iris Dataset')

plt.xlabel("Principal Component 1)

plt.ylabel('Principal Component 2')

plt.legend()
plt.show()
Output:
PCA of Iris Dataset
1.5
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Experiment 4. For a given set of training data examples stored in a .CSV file, implement and
demonstrate the Find-S algorithm to output a description of the set of all hypotheses
consistent with the training examples.

Program:

import pandas as pd
def find s algorithm(file path):

data = pd.read_csv(file path)

print("Training data:")

print(data)

attributes = data.columns]:-1]

class_label = data.columns|[-1]

hypothesis = ['?" for _ in attributes]

for index, row in data.iterrows():

if row[class_label] == "Yes":
for 1, value in enumerate(row][attributes]):
if hypothesis[i] =='?' or hypothesis[i] == value:
hypothesis[i] = value
else:
hypothesis[i] ="?'

return hypothesis
file path = 'training_data extended.csv'
hypothesis = find_s_algorithm(file path)
print("\nThe final hypothesis is:",hypothesis)

Output:
Training data:
Sky Temp Humidity Wind Water Forecast PlayTennis

e Sumny  Hot High Weak Warm Same Mo
1 Sunny  Hot High Strong Warm Same Mo
2 Rainy  Hot High Weak Cool  Change Yes
3 Sunny Mild High Weak Warm Same Yes
4 Sunny Cool  Normal Weak Warm Same Yes
95 Rainy Cool Low Strong Warm  Change Mo
87 Overcast Mild Low Weak Warm  Change Mo
98 Rainy Hot Low 5trong Warm Same Yes
99 Sunny Cool High S5trong Cool Same Mo
18a Sunny  Hot Low Strong Warm  Change Mo

[181 rows x 7 columns]

The final hypothesis is: ['Rainy’, '?', 'Low', 'Strong', 'Warm®, 'Same’]

7|Page
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Experiment 5. Develop a program to implement k-Nearest Neighbour algorithm to classify
the randomly generated 100 values of x in the range of [0,1]. Perform the following based on
dataset generated.
a. Label the first 50 points {x1,...... ,x50} as follows: if (xi <0.5), then xi ¢ Classl,
else xi ¢ Class1
b. Classify the remaining points, x51,...... ,x100 using KNN. Perform this for
k=1,2,3,4,5,20,30

Program:
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
data = np.random.rand(100)
labels = np.zeros(100)
labels[:50] = np.where(data[:50] <= 0.5, 1, 2)
train_data = data[:50].reshape(-1, 1)
train_labels = labels[:50]
test_data = data[50:].reshape(-1, 1)
k values =11, 2, 3, 4, 5, 20, 30]
for k in k_values:
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(train_data, train_labels)
predicted labels = knn.predict(test data)
print(f"K = {k}")
print("Predicted Labels:", predicted labels)
print()
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Output:
K=1
Predicted

2. 2. 2.
1. 2.]

K =2
Predicted
2. 2. 2.
1. 2.]

K=3
Predicted
2. 2. 2.
1. 2.]

K=4
Predicted
2. 2. 2.
1. 2.]

K =25
Predicted
2. 2. 2.
1. 2.]

K = 28
Predicted
2. 2. 2.
1. 2.]

K =38
Predicted
2. 2. 2.
1. 2.]

Labels:

2.

1.

2.

Labels:

2.

1.

2.

Labels:

Z.

1.

2.

Labels:

2.

1.

2.

Labels:

2.

1.

2.

Labels:

Z.

1.

2.

Labels:

2.

1.

2.

[1.

[1.

[1.

[1.

[1.

[1.

[1.
1.
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Experiment 6. Implement the non-parametric Locally Weighted Regression algorithm to fit
data points. Select appropriate data set for your experiment and draw graphs.

Program:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make regression
def kernel(point, x, tau):
m = X.shape[0]
weights = np.mat(np.eye(m))
for 1 in range(m):
diff = point - x[i]
weights([i, i] = np.exp(diff @ diff. T/ (-2.0 * tau ** 2))
return weights
def locally weighted regression(test point, X, y, tau):
X_mat = np.mat(x)
y_mat = np.mat(y).T
weights = kernel(test_point, x_mat, tau)
x_tx =x_mat. T * (weights * x_mat)
if np.linalg.det(x_tx) == 0.0:
print("Singular Matrix")
return
theta = x_tx.I * (x_mat.T * (weights * y_mat))
return test_point @ theta
def Iwr_predictions(x_test, X_train, y_train, tau):
m = x_test.shape[0]
y_pred = np.zeros(m)
for 1 in range(m):
y_pred[i] = locally weighted regression(x_test[i], X_train, y_train, tau)
return y pred
X, y =make regression(n_samples=100, n_features=1, noise=10)
X = np.array(X)
y = np.array(y)
X _with_intercept = np.hstack((np.ones((X.shape[0], 1)), X))
sort_idx = X[:, 0].argsort()
X sorted = X[sort_idx]
X sorted with_intercept = X with_intercept[sort idx]
y_sorted = y[sort_idx]
tau = 0.5 # bandwidth
y_pred = lwr_predictions(X_ sorted with intercept, X with intercept, y, tau)
plt.scatter(X, y, label="Training Data", color="blue")
plt.plot(X_sorted, y pred, color="red', label=fLWR Prediction (tau={tau})')
plt.title("Locally Weighted Regression")
plt.xlabel("X")

10| Page
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plt.ylabel("y")
plt.legend()
plt.show()

Output:

100 Locally Weighted Regression

® Training Data
75 | —— LWR Prediction (tau=0.5)

50
25

> 0
—25 4
~50 4

—75 4

—100 -
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Experiment 7. Develop a program to demonstrate the working of Linear Regression and
Polynomial Regression. Use Boston Housing Dataset for Linear Regression and Auto MPG
Dataset (for vehicle fuel efficiency prediction) for Polynomial Regression.

Program:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make pipeline
from sklearn.metrics import mean squared error, r2_score
from sklearn.model selection import train_test split
import seaborn as sns
print("=== Linear Regression: Boston Housing Dataset ===")
boston_url =
"https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv"
boston df = pd.read_csv(boston_url)
X boston = boston_df.drop(columns="medv")
y_boston = boston_df['medv']
X rm =X boston[['rm']]
X train, X test, y train, y_test = train_test split(X rm, y boston, test size=0.2,
random_state=42)
model = LinearRegression()
model.fit(X train, y train)
y_pred = model.predict(X_test)
print("Mean Squared Error:", mean_squared_error(y_test, y_pred))
print("R? Score:", r2_score(y_test, y pred))
plt.figure(figsize=(8, 5))
plt.scatter(X_test, y_test, color="blue', label='Actual')
plt.plot(X test, y pred, color="red', linewidth=2, label='Predicted')
plt.xlabel('Average Number of Rooms (RM)')
plt.ylabel("House Price')
plt.title('Linear Regression: RM vs Price')
plt.legend()
plt.grid(True)
plt.show()

print("\n=== Polynomial Regression: Auto MPG Dataset ===")

url = "http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-

mpg.data”

column_names = ['mpg', 'cylinders', 'displacement’, 'horsepower', 'weight',
'acceleration’, 'model year', 'origin’, 'car name']

df =pd.read _csv(url, names=column_names, delim_whitespace=True, na_values="?")
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df.dropna(inplace=True)

X auto = df[['horsepower']]

y_auto = df['mpg']

X train_auto, X test auto, y train_auto,y test auto = train test split(X auto,y auto,
test_size=0.2, random _state=42)

degree =2

poly model = make pipeline(PolynomialFeatures(degree), LinearRegression())
poly model.fit(X train auto, y train_auto)

y _pred auto =poly model.predict(X test auto)

print(f'Polynomial Regression (degree={degree}) - MSE:

{mean_squared error(y_test auto,y pred auto):4f}")

print(f"R? Score: {r2_score(y test auto,y pred auto):.4f}")
plt.figure(figsize=(8, 5))

plt.scatter(X_test auto, y test auto, color="blue', label='Actual’)

x_range = np.linspace(X_auto.min(), X auto.max(), 100).reshape(-1, 1)
plt.plot(x_range, poly model.predict(x_range), color='green’, label="Polynomial Fit')
plt.xlabel('"Horsepower")

plt.ylabel('MPG")

plt.title('Polynomial Regression: Horsepower vs MPG')

plt.legend()

plt.grid(True)

plt.show()

Output:
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Mean Squared Error: 46.144775347317264

Rz

House Price

MPG

Linear Regression: Boston Housing Dataset ===

Score: @.3707569232254778

Linear Regression: RM vs Price

30+

40 4
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207

10 ~

® Actual
= Predicted
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Average Number of Rooms (RM)

Polynomial Regression: Horsepower vs MPG

45 -

40

35

30

254
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Experiment 8. Develop a program to demonstrate the working of the decision tree algorithm.
Use Breast Cancer Data set for building the decision tree and apply this knowledge to classify
a new sample.

Program:
import numpy as np
from sklearn.datasets import load breast cancer
from sklearn.model selection import train test split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy score, classification report, confusion matrix

data =load_breast cancer()
X = data.data
y = data.target
X train, X test, y train, y test = train_test split(X, y, test size=0.2, random_state=42)
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X train, y_train)
y_pred = clf.predict(X _test)
print("Accuracy:", accuracy score(y_test, y_pred))
print("\nClassification Report:\n", classification report(y test, y pred,
target names=data.target names))
print("\nConfusion Matrix:\n", confusion_matrix(y_test, y pred))
new_sample = np.array([[17.99, 10.38, 122.8, 1001.0, 0.1184, 0.2776, 0.3001,
0.1471, 0.2419, 0.07871, 1.095, 0.9053, 8.589,
153.4, 0.006399, 0.04904, 0.05373, 0.01587,
0.03003, 0.006193, 25.38, 17.33, 184.6,
2019.0, 0.1622, 0.6656, 0.7119, 0.2654,
0.4601, 0.1189]])
prediction = clf.predict(new_sample)
print("\nNew Sample Prediction:\nClass:", data.target names[prediction][0])
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Output:
Accuracy: ©.9473684218526315

Classification Report:

precision recall fl-score

malignant 8.93 6.93 8.93
benign 8.96 8.96 8.96
accuracy B.95
macro avg 8.94 8.94 8.94
weighted avg .95 9.95 8.95

Confusion Matrix:
[[48 3]
[ 3 68]]

New Sample Prediction:
Class: malignant

Accuracy: 8.9473684218526315

Classification Report:

precision recall fl-score

malignant 8.93 6.93 .93
benign .96 8.96 6.96
accuracy 8.95
macro avg 8.94 8.94 .94
weighted avg .95 .95 6.95

Confusion Matrix:
[[48 3]
[ 2 68]]

Mew Sample Prediction:
Class: malignant

support

43
71

114
114
114

support

43
71

114
114
114
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Experiment 9. Develop a program to implement the Naive Bayesian classifier considering
Olivetti Face Data set for training. Compute the accuracy of the classifier, considering a few
test data sets.

Program:
import numpy as np
from sklearn.datasets import fetch_olivetti_faces
from sklearn.model selection import train test split
from sklearn.naive bayes import GaussianNB
from sklearn.metrics import accuracy score, classification report, confusion matrix
import matplotlib.pyplot as plt
import seaborn as sns

faces = fetch_olivetti_faces()

X = faces.data

y = faces.target

X train, X test, y train, y test =train_test split(X, y, test _size=0.2, random_state=42)
model = GaussianNB()

model.fit(X_train, y_train)

y_pred = model.predict(X _test)

print("Accuracy: {:.2f}%".format(accuracy score(y test, y pred) * 100))
print("\nClassification Report:\n", classification report(y_test, y pred))
print("\nConfusion Matrix:\n", confusion_matrix(y_test, y pred))
plt.figure(figsize=(10, 8))

sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt="d")
plt.title("Confusion Matrix")

plt.xlabel("Predicted")

plt.ylabel("True")

plt.show()
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Output:

downloading Olivetti faces from https://ndownloader.figshare.com/files/5576027 to C:\UsershSourabhiscikit_learn_data
Accuracy: B3.75K

Classification Repart:

precisian recall fl-scare  support

a B.75 1.88 8.EE 2
1 1.4 1.88 1.8 1
2 1.Bd 1.ae 1.0 z
3 1.B8 1.88 1.8 4
4 1.B8 B.&T a.ep 2
5 1.0d 1.a8 1.9 3
7 B.Bd B.ag a.ap a
-} 1.Ba 1.88 1.8 z
9 B.23 1.88 a.44 z
1 1.4 B.5B a.a7 z
11 1.Bd B.&a7 a.sp 3
1z B.5a8 B.5B a.5p z
1z 1.B8 1.88 1.8 1
14 1.0d 1.a8 1.9 3
1% B.5d 1.a8 a.a7? z
1a B.Bd B.a@ a.ap a
17 1.B8 B.331 a.5p 2
1= 1.B8 1.88 1.8 1
19 1.0d 1.a8 1.9 1
ia 1.Ba 1.88 1.8 1
1 1.Ba 1.88 1.8 1
az 1.4 1.88 1.8 2
FE] 1.4 1.88 1.8 z
14 1.Bd 1.ae 1.0 1
L] B.5a8 1.88 a.a? 1
-] 1.B8 B.75 8.8k 4
a7 1.0d 1.a8 1.9 z
iz 1.Ba 1.88 1.8 z
g 1.Ba 1.88 1.8 1
iz 1.4 1.88 1.8 2
] 1.4 1.88 1.8 1
R B.5a 1.ae a.a? 1
L] 1.B8 1.88 1.8 1
L] 1.B8 1.88 1.8 z
a7 1.4 1.88 1.8 z
EL-] 1.Bd 1.ae 1.0 4
L] B.BEa 1.ae a.289 4
aCouracy a8.84 g8
mMICra avg BB B.BE a8.85 2]
weighted avg B.BS B.84 a.382 B8

Confusian Matrix:

[[3ed...a88]
18 ...888]
@B 2 ... 888
[BBB ... 288
[BBB ...8 48]
[BEE ... 884]]
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Experiment 10. Develop a program to implement k-means clustering using Wisconsin Breast
Cancer data set and visualize the clustering result.

Program:
import pandas as pd
import numpy as np
from sklearn.datasets import load breast cancer
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

data = load breast cancer()

X = pd.DataFrame(data.data, columns=data.feature _names)

scaler = StandardScaler()

X scaled = scaler.fit_transform(X)

kmeans = KMeans(n_clusters=2, random_state=42)

clusters = kmeans.fit_predict(X scaled)

X['Cluster'] = clusters

plt.figure(figsize=(10, 6))

plt.scatter(X_scaled|:, 0], X scaled[:, 1], c=clusters, cmap='viridis', alpha=0.6)

plt.scatter(kmeans.cluster centers [:, 0], kmeans.cluster centers [:, 1],
c="red', marker="x', s=200, label='Centroids')

plt.title('K-Means Clustering on Breast Cancer Dataset')

plt.xlabel(data.feature _names[0])

plt.ylabel(data.feature names[1])

plt.legend()
plt.show()
Output:
K-Means Clustering on Breast Cancer Dataset
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