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Institute Vision 
 

To become premier institute committed to academic excellence and global competence for the 

holistic development of students. 

 

Key words: academic excellence, global competence,  holistic development.  

 

 

Institute Mission 
 

M1: Develop competent human resources, adopt outcome based education (OBE) and implement 

cognitive assessment of students. 

 

M2: Inculcate the traits of global competencies amongst the students. 

 

M3: Nurture and train our students to have domain knowledge, develop the qualities of global 

professionals and to have social consciousness for holistic development. 

 

 

Department Vision 
 

To deliver a quality and responsive education in the field of artificial intelligence and data science 

emphasizing professional skills to face global challenges in the evolving IT paradigm. 

 

Key words: quality and responsive, professional skills, global challenges. 

 

Department Mission 

 
M1: Leverage multiple pedagogical approaches to impart knowledge on the current and emerging AI  

technologies.  

 

M2: Develop an inclusive and holistic ambiance that bolsters problem solving, cognitive abilities and 

critical thinking.  
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M3: Enable students to develop trust worthiness, team spirit, understanding law-of-the-land, social  

behavior to be a global stake holder.  

Program Specific Outcomes (PSOs): 
 

PSO1: To apply core knowledge of Artificial Intelligence, Machine Learning, Deep Learning, Data 

Science, Big Data Analytics and Statistical Learning to develop effective solutions for real-world 

problems. 

 

PSO2: To demonstrate proficiency in specialized and emerging technologies such as Natural 

Language Processing, Cloud Computing, Robotic Process Automation, Storage Area Networks and the 

Internet of Things to meet the stringent and diverse professional challenges.  

 

PSO3: To imbibe managerial skills, social responsibility, ethical and moral values through courses in 

Management and Entrepreneurship, Software Engineering Principles, Universal Human Values and 

Ability Enhancement Programs to meet the industry and societal expectations. 

 
Program Educational Objectives (PEOs) 

 
PEO 1: Build a strong foundation in mathematics, core programming, artificial intelligence, machine 

learning, and data science to enable graduates to analyze, design, and implement intelligent systems 

for solving complex real-world problems. 

 

PEO 2: Foster creativity, cognitive and research skills to analyze the requirements and technical 

specifications of software to articulate novel engineering solutions for an efficient product design. 

 

PEO 3: Prepare graduates for dynamic career opportunities in AI and Data Science by equipping them 

with interdisciplinary knowledge, adaptability, and practical exposure to tools and techniques required 

for industry and research. 

 

PEO 4: Instill a strong sense of ethics, professional responsibility, and human values, empowering 

graduates to contribute positively to society and lead with integrity in their professional domains. 
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PEO 5: Encourage graduates to pursue higher education, certification program, entrepreneurial 

ventures, etc. by nurturing a mindset of continuous learning and awareness of global trends and 

challenges. 
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Experiment 1. Develop a program to create histograms for all numerical features and analyze 

the distribution of each feature. Generate box plots for all numerical features and identify any 

outliers. Use California Housing dataset. 

 

Program: 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.datasets import fetch_california_housing 

data = fetch_california_housing(as_frame=True) 

df = data.frame 

print(df.head()) 

numerical_features = df.select_dtypes(include=['float64', 'int64']).columns.tolist() 

print(f'Numerical features: {numerical_features}') 

plt.figure(figsize=(20, 15)) 

for i, feature in enumerate(numerical_features): 

    plt.subplot(3, 3, i + 1) 

    sns.histplot(df[feature], kde=True) 

    plt.title(f'Histogram of {feature}') 

plt.tight_layout() 

plt.show() 

plt.figure(figsize=(20, 15)) 

for i, feature in enumerate(numerical_features): 

    plt.subplot(3, 3, i + 1) 

    sns.boxplot(x=df[feature]) 

    plt.title(f'Box plot of {feature}') 

plt.tight_layout() 

plt.show() 

 

Output: 
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Experiment 2. Develop a program to compute the correlation matrix to understand the 

relationships between pairs of features. Visualize the correlation matrix using a heatmap to 

know which variables have strong positive/negative correlations. Create a pair plot to visualize 

pairwise relationships between features. Use California Housing dataset. 

 

Program: 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.datasets import fetch_california_housing 

data = fetch_california_housing(as_frame=True) 

df = data.frame 

print("First few rows of the dataset:") 

print(df.head()) 

corr_matrix = df.corr() 

print("\nCorrelation matrix:") 

print(corr_matrix) 

plt.figure(figsize=(10, 8)) 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='2f', linewidths=0.5) 

plt.title("Correlation Matrix Heatmap") 

plt.show() 

sns.pairplot(df) 

plt.suptitle('Pairwise Relationships between Features', y=1.02) 

plt.show() 

 

Output: 
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Experiment 3. Develop a program to implement Principal Component Analysis (PCA) for 

reducing the dimensionality of the Iris dataset from 4 features to 2. 

 

Program: 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.datasets import load_iris 

from sklearn.decomposition import PCA 

data = load_iris() 

iris_df = pd.DataFrame(data.data, columns=data.feature_names) 

iris_df['species'] = pd.Categorical.from_codes(data.target, data.target_names) 

pca = PCA(n_components=2) 

principal_components = pca.fit_transform(data.data) 

pca_df = pd.DataFrame(data=principal_components, columns=['PC1', 'PC2']) 

pca_df['species'] = iris_df['species'] 

plt.figure(figsize=(8, 6)) 

colors = ['red', 'green', 'blue'] 

species = data.target_names 

for i, color in enumerate(colors): 

    subset = pca_df[pca_df['species'] == species[i]] 

    plt.scatter(subset['PC1'], subset['PC2'], color=color, label=species[i]) 

plt.title('PCA of Iris Dataset') 

plt.xlabel('Principal Component 1') 

plt.ylabel('Principal Component 2') 

plt.legend() 

plt.show() 

 

Output: 
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Experiment 4. For a given set of training data examples stored in a .CSV file, implement and 

demonstrate the Find-S algorithm to output a description of the set of all hypotheses 

consistent with the training examples. 

 

Program: 

import pandas as pd 

def find_s_algorithm(file_path): 

    data = pd.read_csv(file_path) 

    print("Training data:") 

    print(data) 

    attributes = data.columns[:-1] 

    class_label = data.columns[-1] 

    hypothesis = ['?' for _ in attributes] 

    for index, row in data.iterrows(): 

        if row[class_label] == 'Yes': 

            for i, value in enumerate(row[attributes]): 

                if hypothesis[i] == '?' or hypothesis[i] == value: 

                    hypothesis[i] = value 

                else: 

                    hypothesis[i] = '?' 

    return hypothesis 

file_path = 'training_data_extended.csv' 

hypothesis = find_s_algorithm(file_path) 

print("\nThe final hypothesis is:",hypothesis) 

 

Output:  

 
 

 

 



                                                                                                           Machine Learning Lab Manual BCM601 

8 | P a g e  
 

Experiment 5. Develop a program to implement k-Nearest Neighbour algorithm to classify 

the randomly generated 100 values of x in the range of [0,1]. Perform the following based on 

dataset generated. 

a. Label the first 50 points {x1,……,x50} as follows: if (xi ≤ 0.5), then xi ε Class1,  

else xi ε Class1 

b. Classify the remaining points, x51,……,x100 using KNN. Perform this for  

k=1,2,3,4,5,20,30 

 

Program: 

import numpy as np 

from sklearn.neighbors import KNeighborsClassifier 

data = np.random.rand(100) 

labels = np.zeros(100) 

labels[:50] = np.where(data[:50] <= 0.5, 1, 2) 

train_data = data[:50].reshape(-1, 1) 

train_labels = labels[:50] 

test_data = data[50:].reshape(-1, 1) 

k_values = [1, 2, 3, 4, 5, 20, 30] 

for k in k_values: 

    knn = KNeighborsClassifier(n_neighbors=k) 

    knn.fit(train_data, train_labels) 

    predicted_labels = knn.predict(test_data) 

        print(f"K = {k}") 

    print("Predicted Labels:", predicted_labels) 

    print() 
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Output: 
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Experiment 6. Implement the non-parametric Locally Weighted Regression algorithm to fit 

data points. Select appropriate data set for your experiment and draw graphs. 

 

Program: 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.datasets import make_regression 

def kernel(point, x, tau): 

    m = x.shape[0] 

    weights = np.mat(np.eye(m)) 

    for i in range(m): 

        diff = point - x[i] 

        weights[i, i] = np.exp(diff @ diff.T / (-2.0 * tau ** 2)) 

    return weights 

def locally_weighted_regression(test_point, x, y, tau): 

    x_mat = np.mat(x) 

    y_mat = np.mat(y).T 

    weights = kernel(test_point, x_mat, tau) 

    x_tx = x_mat.T * (weights * x_mat) 

    if np.linalg.det(x_tx) == 0.0: 

        print("Singular Matrix") 

        return 

    theta = x_tx.I * (x_mat.T * (weights * y_mat)) 

    return test_point @ theta 

def lwr_predictions(x_test, x_train, y_train, tau): 

    m = x_test.shape[0] 

    y_pred = np.zeros(m) 

    for i in range(m): 

        y_pred[i] = locally_weighted_regression(x_test[i], x_train, y_train, tau) 

    return y_pred 

X, y = make_regression(n_samples=100, n_features=1, noise=10) 

X = np.array(X) 

y = np.array(y) 

X_with_intercept = np.hstack((np.ones((X.shape[0], 1)), X)) 

sort_idx = X[:, 0].argsort() 

X_sorted = X[sort_idx] 

X_sorted_with_intercept = X_with_intercept[sort_idx] 

y_sorted = y[sort_idx] 

tau = 0.5  # bandwidth 

y_pred = lwr_predictions(X_sorted_with_intercept, X_with_intercept, y, tau) 

plt.scatter(X, y, label="Training Data", color="blue") 

plt.plot(X_sorted, y_pred, color='red', label=f'LWR Prediction (tau={tau})') 

plt.title("Locally Weighted Regression") 

plt.xlabel("X") 
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plt.ylabel("y") 

plt.legend() 

plt.show() 

 

Output: 
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Experiment 7. Develop a program to demonstrate the working of Linear Regression and 

Polynomial Regression. Use Boston Housing Dataset for Linear Regression and Auto MPG 

Dataset (for vehicle fuel efficiency prediction) for Polynomial Regression. 

 

Program: 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

from sklearn.linear_model import LinearRegression 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.pipeline import make_pipeline 

from sklearn.metrics import mean_squared_error, r2_score 

from sklearn.model_selection import train_test_split 

import seaborn as sns 

print("=== Linear Regression: Boston Housing Dataset ===") 

boston_url = 

"https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv" 

boston_df = pd.read_csv(boston_url) 

X_boston = boston_df.drop(columns='medv') 

y_boston = boston_df['medv'] 

X_rm = X_boston[['rm']] 

X_train, X_test, y_train, y_test = train_test_split(X_rm, y_boston, test_size=0.2, 

random_state=42) 

model = LinearRegression() 

model.fit(X_train, y_train) 

y_pred = model.predict(X_test) 

print("Mean Squared Error:", mean_squared_error(y_test, y_pred)) 

print("R² Score:", r2_score(y_test, y_pred)) 

plt.figure(figsize=(8, 5)) 

plt.scatter(X_test, y_test, color='blue', label='Actual') 

plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted') 

plt.xlabel('Average Number of Rooms (RM)') 

plt.ylabel('House Price') 

plt.title('Linear Regression: RM vs Price') 

plt.legend() 

plt.grid(True) 

plt.show() 

 

print("\n=== Polynomial Regression: Auto MPG Dataset ===") 

url = "http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-

mpg.data" 

column_names = ['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 

                'acceleration', 'model year', 'origin', 'car name'] 

df = pd.read_csv(url, names=column_names, delim_whitespace=True, na_values='?') 
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df.dropna(inplace=True) 

X_auto = df[['horsepower']] 

y_auto = df['mpg'] 

X_train_auto, X_test_auto, y_train_auto, y_test_auto = train_test_split(X_auto, y_auto, 

test_size=0.2, random_state=42) 

degree = 2 

poly_model = make_pipeline(PolynomialFeatures(degree), LinearRegression()) 

poly_model.fit(X_train_auto, y_train_auto) 

y_pred_auto = poly_model.predict(X_test_auto) 

print(f"Polynomial Regression (degree={degree}) - MSE: 

{mean_squared_error(y_test_auto, y_pred_auto):.4f}") 

print(f"R² Score: {r2_score(y_test_auto, y_pred_auto):.4f}") 

plt.figure(figsize=(8, 5)) 

plt.scatter(X_test_auto, y_test_auto, color='blue', label='Actual') 

x_range = np.linspace(X_auto.min(), X_auto.max(), 100).reshape(-1, 1) 

plt.plot(x_range, poly_model.predict(x_range), color='green', label='Polynomial Fit') 

plt.xlabel('Horsepower') 

plt.ylabel('MPG') 

plt.title('Polynomial Regression: Horsepower vs MPG') 

plt.legend() 

plt.grid(True) 

plt.show() 

 

Output: 
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Experiment 8. Develop a program to demonstrate the working of the decision tree algorithm. 

Use Breast Cancer Data set for building the decision tree and apply this knowledge to classify 

a new sample. 

 

Program: 

import numpy as np 

from sklearn.datasets import load_breast_cancer 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix 

 

data = load_breast_cancer() 

X = data.data 

y = data.target 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

clf = DecisionTreeClassifier(random_state=42) 

clf.fit(X_train, y_train) 

y_pred = clf.predict(X_test) 

print("Accuracy:", accuracy_score(y_test, y_pred)) 

print("\nClassification Report:\n", classification_report(y_test, y_pred, 

target_names=data.target_names)) 

print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred)) 

new_sample = np.array([[17.99, 10.38, 122.8, 1001.0, 0.1184, 0.2776, 0.3001, 

                        0.1471, 0.2419, 0.07871, 1.095, 0.9053, 8.589, 

                        153.4, 0.006399, 0.04904, 0.05373, 0.01587, 

                        0.03003, 0.006193, 25.38, 17.33, 184.6, 

                        2019.0, 0.1622, 0.6656, 0.7119, 0.2654, 

                        0.4601, 0.1189]]) 

prediction = clf.predict(new_sample) 

print("\nNew Sample Prediction:\nClass:", data.target_names[prediction][0]) 
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Output: 
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Experiment 9. Develop a program to implement the Naive Bayesian classifier considering 

Olivetti Face Data set for training. Compute the accuracy of the classifier, considering a few 

test data sets. 

 

Program: 

import numpy as np 

from sklearn.datasets import fetch_olivetti_faces 

from sklearn.model_selection import train_test_split 

from sklearn.naive_bayes import GaussianNB 

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

faces = fetch_olivetti_faces() 

X = faces.data 

y = faces.target 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

model = GaussianNB() 

model.fit(X_train, y_train) 

y_pred = model.predict(X_test) 

print("Accuracy: {:.2f}%".format(accuracy_score(y_test, y_pred) * 100)) 

print("\nClassification Report:\n", classification_report(y_test, y_pred)) 

print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred)) 

plt.figure(figsize=(10, 8)) 

sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt="d") 

plt.title("Confusion Matrix") 

plt.xlabel("Predicted") 

plt.ylabel("True") 

plt.show() 
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Output: 
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Experiment 10. Develop a program to implement k-means clustering using Wisconsin Breast 

Cancer data set and visualize the clustering result. 

 

Program: 

import pandas as pd 

import numpy as np 

from sklearn.datasets import load_breast_cancer 

from sklearn.cluster import KMeans 

from sklearn.preprocessing import StandardScaler 

import matplotlib.pyplot as plt 

 

data = load_breast_cancer() 

X = pd.DataFrame(data.data, columns=data.feature_names) 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X) 

kmeans = KMeans(n_clusters=2, random_state=42) 

clusters = kmeans.fit_predict(X_scaled) 

X['Cluster'] = clusters 

plt.figure(figsize=(10, 6)) 

plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=clusters, cmap='viridis', alpha=0.6) 

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], 

            c='red', marker='x', s=200, label='Centroids') 

plt.title('K-Means Clustering on Breast Cancer Dataset') 

plt.xlabel(data.feature_names[0]) 

plt.ylabel(data.feature_names[1]) 

plt.legend() 

plt.show() 

 

Output: 

 


