

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI – 590 009.

(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
Accredited by NAAC)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Campus :Savagaon Road, Belagavi – 590 009. : 0831 – 2438100, 2438123, Fax: 0831-2438197

Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

Machine Learning

 LAB MANUAL

VI Semester AI&DS

Designed By,

1. Dr. Aijaz Qazi

2. Prof. Vaibhav Chavan

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI – 590 009.

(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
Accredited by NAAC)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Campus :Savagaon Road, Belagavi – 590 009. : 0831 – 2438100, 2438123, Fax: 0831-2438197

Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

Institute Vision

To become premier institute committed to academic excellence and global competence for the

holistic development of students.

Key words: academic excellence, global competence, holistic development.

Institute Mission

M1: Develop competent human resources, adopt outcome based education (OBE) and implement

cognitive assessment of students.

M2: Inculcate the traits of global competencies amongst the students.

M3: Nurture and train our students to have domain knowledge, develop the qualities of global

professionals and to have social consciousness for holistic development.

Department Vision

To deliver a quality and responsive education in the field of artificial intelligence and data science

emphasizing professional skills to face global challenges in the evolving IT paradigm.

Key words: quality and responsive, professional skills, global challenges.

Department Mission

M1: Leverage multiple pedagogical approaches to impart knowledge on the current and emerging AI

technologies.

M2: Develop an inclusive and holistic ambiance that bolsters problem solving, cognitive abilities and

critical thinking.

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI – 590 009.

(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
Accredited by NAAC)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Campus :Savagaon Road, Belagavi – 590 009. : 0831 – 2438100, 2438123, Fax: 0831-2438197

Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

M3: Enable students to develop trust worthiness, team spirit, understanding law-of-the-land, social

behavior to be a global stake holder.

Program Specific Outcomes (PSOs):

PSO1: To apply core knowledge of Artificial Intelligence, Machine Learning, Deep Learning, Data

Science, Big Data Analytics and Statistical Learning to develop effective solutions for real-world

problems.

PSO2: To demonstrate proficiency in specialized and emerging technologies such as Natural

Language Processing, Cloud Computing, Robotic Process Automation, Storage Area Networks and the

Internet of Things to meet the stringent and diverse professional challenges.

PSO3: To imbibe managerial skills, social responsibility, ethical and moral values through courses in

Management and Entrepreneurship, Software Engineering Principles, Universal Human Values and

Ability Enhancement Programs to meet the industry and societal expectations.

Program Educational Objectives (PEOs)

PEO 1: Build a strong foundation in mathematics, core programming, artificial intelligence, machine

learning, and data science to enable graduates to analyze, design, and implement intelligent systems

for solving complex real-world problems.

PEO 2: Foster creativity, cognitive and research skills to analyze the requirements and technical

specifications of software to articulate novel engineering solutions for an efficient product design.

PEO 3: Prepare graduates for dynamic career opportunities in AI and Data Science by equipping them

with interdisciplinary knowledge, adaptability, and practical exposure to tools and techniques required

for industry and research.

PEO 4: Instill a strong sense of ethics, professional responsibility, and human values, empowering

graduates to contribute positively to society and lead with integrity in their professional domains.

SURESH ANGADI EDUCATION FOUNDATION’S

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT
Savagaon Road, BELAGAVI – 590 009.

(Approved by AICTE, New Delhi &Affiliated to Visvesvaraya Technological University, Belagavi,
Accredited by NAAC)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Campus :Savagaon Road, Belagavi – 590 009. : 0831 – 2438100, 2438123, Fax: 0831-2438197

Web Site: www.aitmbgm.ac.in, E-mail: director.aitm@gmail.com

PEO 5: Encourage graduates to pursue higher education, certification program, entrepreneurial

ventures, etc. by nurturing a mindset of continuous learning and awareness of global trends and

challenges.

INDEX
Sl.No Experiment Page No

1 Develop a program to create histograms for all numerical features and

analyze the distribution of each feature. Generate box plots for all

numerical features and identify any outliers. Use California Housing

dataset.

1

2 Develop a program to Compute the correlation matrix to understand the

relationships between pairs of features. Visualize the correlation matrix

using a heatmap to know which variables have strong positive/negative

correlations. Create a pair plot to visualize pairwise relationships

between features. Use California Housing dataset.

3

3 Develop a program to implement Principal Component Analysis (PCA)

for reducing the dimensionality of the Iris dataset from 4 features to 2.

6

4 For a given set of training data examples stored in a .CSV file,

implement and demonstrate the Find-S algorithm to output a description

of the set of all hypotheses consistent with the training examples.

7

5 Develop a program to implement k-Nearest Neighbour algorithm to

classify the randomly generated 100 values of x in the range of [0,1].

Perform the following based on dataset generated. a. Label the first 50

points {x1,……,x50} as follows: if (xi ≤ 0.5), then xi ∊ Class1, else xi ∊

Class1 b. Classify the remaining points, x51,……,x100 using KNN.

Perform this for k=1,2,3,4,5,20,30

8

6 Implement the non-parametric Locally Weighted Regression algorithm

in order to fit data points. Select appropriate data set for your

experiment and draw graphs

10

7 Develop a program to demonstrate the working of Linear Regression

and Polynomial Regression. Use Boston Housing Dataset for Linear

Regression and Auto MPG Dataset (for vehicle fuel efficiency

prediction) for Polynomial Regression.

12

8 Develop a program to demonstrate the working of the decision tree

algorithm. Use Breast Cancer Data set for building the decision tree and

apply this knowledge to classify a new sample.

15

9 Develop a program to implement the Naive Bayesian classifier

considering Olivetti Face Data set for training. Compute the accuracy of

the classifier, considering a few test data sets.

17

10 Develop a program to implement k-means clustering using Wisconsin

Breast Cancer data set and visualize the clustering result.

20

 Machine Learning Lab Manual BCM601

1 | P a g e

Experiment 1. Develop a program to create histograms for all numerical features and analyze

the distribution of each feature. Generate box plots for all numerical features and identify any

outliers. Use California Housing dataset.

Program:

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.datasets import fetch_california_housing

data = fetch_california_housing(as_frame=True)

df = data.frame

print(df.head())

numerical_features = df.select_dtypes(include=['float64', 'int64']).columns.tolist()

print(f'Numerical features: {numerical_features}')

plt.figure(figsize=(20, 15))

for i, feature in enumerate(numerical_features):

 plt.subplot(3, 3, i + 1)

 sns.histplot(df[feature], kde=True)

 plt.title(f'Histogram of {feature}')

plt.tight_layout()

plt.show()

plt.figure(figsize=(20, 15))

for i, feature in enumerate(numerical_features):

 plt.subplot(3, 3, i + 1)

 sns.boxplot(x=df[feature])

 plt.title(f'Box plot of {feature}')

plt.tight_layout()

plt.show()

Output:

 Machine Learning Lab Manual BCM601

2 | P a g e

 Machine Learning Lab Manual BCM601

3 | P a g e

Experiment 2. Develop a program to compute the correlation matrix to understand the

relationships between pairs of features. Visualize the correlation matrix using a heatmap to

know which variables have strong positive/negative correlations. Create a pair plot to visualize

pairwise relationships between features. Use California Housing dataset.

Program:

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.datasets import fetch_california_housing

data = fetch_california_housing(as_frame=True)

df = data.frame

print("First few rows of the dataset:")

print(df.head())

corr_matrix = df.corr()

print("\nCorrelation matrix:")

print(corr_matrix)

plt.figure(figsize=(10, 8))

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='2f', linewidths=0.5)

plt.title("Correlation Matrix Heatmap")

plt.show()

sns.pairplot(df)

plt.suptitle('Pairwise Relationships between Features', y=1.02)

plt.show()

Output:

 Machine Learning Lab Manual BCM601

4 | P a g e

 Machine Learning Lab Manual BCM601

5 | P a g e

 Machine Learning Lab Manual BCM601

6 | P a g e

Experiment 3. Develop a program to implement Principal Component Analysis (PCA) for

reducing the dimensionality of the Iris dataset from 4 features to 2.

Program:

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

from sklearn.decomposition import PCA

data = load_iris()

iris_df = pd.DataFrame(data.data, columns=data.feature_names)

iris_df['species'] = pd.Categorical.from_codes(data.target, data.target_names)

pca = PCA(n_components=2)

principal_components = pca.fit_transform(data.data)

pca_df = pd.DataFrame(data=principal_components, columns=['PC1', 'PC2'])

pca_df['species'] = iris_df['species']

plt.figure(figsize=(8, 6))

colors = ['red', 'green', 'blue']

species = data.target_names

for i, color in enumerate(colors):

 subset = pca_df[pca_df['species'] == species[i]]

 plt.scatter(subset['PC1'], subset['PC2'], color=color, label=species[i])

plt.title('PCA of Iris Dataset')

plt.xlabel('Principal Component 1')

plt.ylabel('Principal Component 2')

plt.legend()

plt.show()

Output:

 Machine Learning Lab Manual BCM601

7 | P a g e

Experiment 4. For a given set of training data examples stored in a .CSV file, implement and

demonstrate the Find-S algorithm to output a description of the set of all hypotheses

consistent with the training examples.

Program:

import pandas as pd

def find_s_algorithm(file_path):

 data = pd.read_csv(file_path)

 print("Training data:")

 print(data)

 attributes = data.columns[:-1]

 class_label = data.columns[-1]

 hypothesis = ['?' for _ in attributes]

 for index, row in data.iterrows():

 if row[class_label] == 'Yes':

 for i, value in enumerate(row[attributes]):

 if hypothesis[i] == '?' or hypothesis[i] == value:

 hypothesis[i] = value

 else:

 hypothesis[i] = '?'

 return hypothesis

file_path = 'training_data_extended.csv'

hypothesis = find_s_algorithm(file_path)

print("\nThe final hypothesis is:",hypothesis)

Output:

 Machine Learning Lab Manual BCM601

8 | P a g e

Experiment 5. Develop a program to implement k-Nearest Neighbour algorithm to classify

the randomly generated 100 values of x in the range of [0,1]. Perform the following based on

dataset generated.

a. Label the first 50 points {x1,……,x50} as follows: if (xi ≤ 0.5), then xi ε Class1,

else xi ε Class1

b. Classify the remaining points, x51,……,x100 using KNN. Perform this for

k=1,2,3,4,5,20,30

Program:

import numpy as np

from sklearn.neighbors import KNeighborsClassifier

data = np.random.rand(100)

labels = np.zeros(100)

labels[:50] = np.where(data[:50] <= 0.5, 1, 2)

train_data = data[:50].reshape(-1, 1)

train_labels = labels[:50]

test_data = data[50:].reshape(-1, 1)

k_values = [1, 2, 3, 4, 5, 20, 30]

for k in k_values:

 knn = KNeighborsClassifier(n_neighbors=k)

 knn.fit(train_data, train_labels)

 predicted_labels = knn.predict(test_data)

 print(f"K = {k}")

 print("Predicted Labels:", predicted_labels)

 print()

 Machine Learning Lab Manual BCM601

9 | P a g e

Output:

 Machine Learning Lab Manual BCM601

10 | P a g e

Experiment 6. Implement the non-parametric Locally Weighted Regression algorithm to fit

data points. Select appropriate data set for your experiment and draw graphs.

Program:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import make_regression

def kernel(point, x, tau):

 m = x.shape[0]

 weights = np.mat(np.eye(m))

 for i in range(m):

 diff = point - x[i]

 weights[i, i] = np.exp(diff @ diff.T / (-2.0 * tau ** 2))

 return weights

def locally_weighted_regression(test_point, x, y, tau):

 x_mat = np.mat(x)

 y_mat = np.mat(y).T

 weights = kernel(test_point, x_mat, tau)

 x_tx = x_mat.T * (weights * x_mat)

 if np.linalg.det(x_tx) == 0.0:

 print("Singular Matrix")

 return

 theta = x_tx.I * (x_mat.T * (weights * y_mat))

 return test_point @ theta

def lwr_predictions(x_test, x_train, y_train, tau):

 m = x_test.shape[0]

 y_pred = np.zeros(m)

 for i in range(m):

 y_pred[i] = locally_weighted_regression(x_test[i], x_train, y_train, tau)

 return y_pred

X, y = make_regression(n_samples=100, n_features=1, noise=10)

X = np.array(X)

y = np.array(y)

X_with_intercept = np.hstack((np.ones((X.shape[0], 1)), X))

sort_idx = X[:, 0].argsort()

X_sorted = X[sort_idx]

X_sorted_with_intercept = X_with_intercept[sort_idx]

y_sorted = y[sort_idx]

tau = 0.5 # bandwidth

y_pred = lwr_predictions(X_sorted_with_intercept, X_with_intercept, y, tau)

plt.scatter(X, y, label="Training Data", color="blue")

plt.plot(X_sorted, y_pred, color='red', label=f'LWR Prediction (tau={tau})')

plt.title("Locally Weighted Regression")

plt.xlabel("X")

 Machine Learning Lab Manual BCM601

11 | P a g e

plt.ylabel("y")

plt.legend()

plt.show()

Output:

 Machine Learning Lab Manual BCM601

12 | P a g e

Experiment 7. Develop a program to demonstrate the working of Linear Regression and

Polynomial Regression. Use Boston Housing Dataset for Linear Regression and Auto MPG

Dataset (for vehicle fuel efficiency prediction) for Polynomial Regression.

Program:

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

from sklearn.pipeline import make_pipeline

from sklearn.metrics import mean_squared_error, r2_score

from sklearn.model_selection import train_test_split

import seaborn as sns

print("=== Linear Regression: Boston Housing Dataset ===")

boston_url =

"https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv"

boston_df = pd.read_csv(boston_url)

X_boston = boston_df.drop(columns='medv')

y_boston = boston_df['medv']

X_rm = X_boston[['rm']]

X_train, X_test, y_train, y_test = train_test_split(X_rm, y_boston, test_size=0.2,

random_state=42)

model = LinearRegression()

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print("Mean Squared Error:", mean_squared_error(y_test, y_pred))

print("R² Score:", r2_score(y_test, y_pred))

plt.figure(figsize=(8, 5))

plt.scatter(X_test, y_test, color='blue', label='Actual')

plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted')

plt.xlabel('Average Number of Rooms (RM)')

plt.ylabel('House Price')

plt.title('Linear Regression: RM vs Price')

plt.legend()

plt.grid(True)

plt.show()

print("\n=== Polynomial Regression: Auto MPG Dataset ===")

url = "http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-

mpg.data"

column_names = ['mpg', 'cylinders', 'displacement', 'horsepower', 'weight',

 'acceleration', 'model year', 'origin', 'car name']

df = pd.read_csv(url, names=column_names, delim_whitespace=True, na_values='?')

 Machine Learning Lab Manual BCM601

13 | P a g e

df.dropna(inplace=True)

X_auto = df[['horsepower']]

y_auto = df['mpg']

X_train_auto, X_test_auto, y_train_auto, y_test_auto = train_test_split(X_auto, y_auto,

test_size=0.2, random_state=42)

degree = 2

poly_model = make_pipeline(PolynomialFeatures(degree), LinearRegression())

poly_model.fit(X_train_auto, y_train_auto)

y_pred_auto = poly_model.predict(X_test_auto)

print(f"Polynomial Regression (degree={degree}) - MSE:

{mean_squared_error(y_test_auto, y_pred_auto):.4f}")

print(f"R² Score: {r2_score(y_test_auto, y_pred_auto):.4f}")

plt.figure(figsize=(8, 5))

plt.scatter(X_test_auto, y_test_auto, color='blue', label='Actual')

x_range = np.linspace(X_auto.min(), X_auto.max(), 100).reshape(-1, 1)

plt.plot(x_range, poly_model.predict(x_range), color='green', label='Polynomial Fit')

plt.xlabel('Horsepower')

plt.ylabel('MPG')

plt.title('Polynomial Regression: Horsepower vs MPG')

plt.legend()

plt.grid(True)

plt.show()

Output:

 Machine Learning Lab Manual BCM601

14 | P a g e

 Machine Learning Lab Manual BCM601

15 | P a g e

Experiment 8. Develop a program to demonstrate the working of the decision tree algorithm.

Use Breast Cancer Data set for building the decision tree and apply this knowledge to classify

a new sample.

Program:

import numpy as np

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

data = load_breast_cancer()

X = data.data

y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

clf = DecisionTreeClassifier(random_state=42)

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

print("Accuracy:", accuracy_score(y_test, y_pred))

print("\nClassification Report:\n", classification_report(y_test, y_pred,

target_names=data.target_names))

print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred))

new_sample = np.array([[17.99, 10.38, 122.8, 1001.0, 0.1184, 0.2776, 0.3001,

 0.1471, 0.2419, 0.07871, 1.095, 0.9053, 8.589,

 153.4, 0.006399, 0.04904, 0.05373, 0.01587,

 0.03003, 0.006193, 25.38, 17.33, 184.6,

 2019.0, 0.1622, 0.6656, 0.7119, 0.2654,

 0.4601, 0.1189]])

prediction = clf.predict(new_sample)

print("\nNew Sample Prediction:\nClass:", data.target_names[prediction][0])

 Machine Learning Lab Manual BCM601

16 | P a g e

Output:

 Machine Learning Lab Manual BCM601

17 | P a g e

Experiment 9. Develop a program to implement the Naive Bayesian classifier considering

Olivetti Face Data set for training. Compute the accuracy of the classifier, considering a few

test data sets.

Program:

import numpy as np

from sklearn.datasets import fetch_olivetti_faces

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

faces = fetch_olivetti_faces()

X = faces.data

y = faces.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = GaussianNB()

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print("Accuracy: {:.2f}%".format(accuracy_score(y_test, y_pred) * 100))

print("\nClassification Report:\n", classification_report(y_test, y_pred))

print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred))

plt.figure(figsize=(10, 8))

sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt="d")

plt.title("Confusion Matrix")

plt.xlabel("Predicted")

plt.ylabel("True")

plt.show()

 Machine Learning Lab Manual BCM601

18 | P a g e

Output:

 Machine Learning Lab Manual BCM601

19 | P a g e

 Machine Learning Lab Manual BCM601

20 | P a g e

Experiment 10. Develop a program to implement k-means clustering using Wisconsin Breast

Cancer data set and visualize the clustering result.

Program:

import pandas as pd

import numpy as np

from sklearn.datasets import load_breast_cancer

from sklearn.cluster import KMeans

from sklearn.preprocessing import StandardScaler

import matplotlib.pyplot as plt

data = load_breast_cancer()

X = pd.DataFrame(data.data, columns=data.feature_names)

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

kmeans = KMeans(n_clusters=2, random_state=42)

clusters = kmeans.fit_predict(X_scaled)

X['Cluster'] = clusters

plt.figure(figsize=(10, 6))

plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=clusters, cmap='viridis', alpha=0.6)

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],

 c='red', marker='x', s=200, label='Centroids')

plt.title('K-Means Clustering on Breast Cancer Dataset')

plt.xlabel(data.feature_names[0])

plt.ylabel(data.feature_names[1])

plt.legend()

plt.show()

Output:

